Гладкие мышцы. Функции и свойства гладких мышц Основными свойствами гладких мышц жкт являются

  • 25.02.2024

Важным свойством гладкой мышцы является ее большая пластичность т. е. способность сохранять приданную растяжением длину без изменения напряжения. Различие между скелетной мышцей, обладающей малой пластичностью, и гладкой мышцей с хорошо выраженной пластичностью, легко обнаруживается, если их сначала медленно растянуть, а затем снять растягивающий груз. тотчас же укорачивается после снятия груза. В отличие от этого гладкая мышца после снятия груза остается растянутой до тех пор, пока под влиянием какого-либо раздражения не возникает ее активного сокращения.

Свойство пластичности имеет очень большое значение для нормальной деятельности гладких мышц стенок полых органов, например мочевого пузыря: благодаря пластичности гладкой мускулатуры стенок пузыря давление внутри него относительно мало изменяется при разной степени наполнения.

Возбудимость и возбуждение

Гладкие мышцы менее возбудимы, чем скелетные: их пороги раздражения выше, а хронаксия длиннее. Потенциалы действия большинства гладкомышечных волокон имеют малую амплитуду (порядка 60 мв вместо 120 же в скелетных мышечных волокнах) и большую продолжительность - до 1-3 секунд. На рис. 151 показан потенциал действия одиночного волокна мышцы матки.

Рефрактерный период продолжается в течение всего периода потенциала действия, т. е. 1-3 секунд. Скорость проведения возбуждения варьирует в разных волокнах от нескольких миллиметров до нескольких сантиметров в секунду.

Существует большое число различных типов гладких мышц в теле животных и человека. Большинство полых органов тела выстлано гладкими мышцами, имеющими сенцитиальный тип строения. Отдельные волокна таких мышц очень тесно примыкают друг к другу и создается впечатление, что морфологически они составляют единое целое.

Однакоэлектронномикроскопические исследования показали, что мембранной и протоплазматической непрерывности между отдельными волокнами мышечного синцития не существует: они отделены друг от друга тонкими (200-500 Å) щелями. Понятие «синцитиальное строение» является в настоящее время скорее физиологическим, чем морфологическим.

Синцитий - это функциональное образование, которое обеспечивает то, что потенциалы действия и медленные волны деполяризации могут беспрепятственно распространяться с одного волокна на другое. Нервные окончания расположены только на небольшом числе волокон синцития. Однако вследствие беспрепятственного распространения возбуждения с одного волокна на другое вовлечение в реакцию всей мышцы может происходить, если нервный импульс поступает к небольшому числу мышечных волокон.

Сокращение гладкой мышцы

При большой силе одиночного раздражения может возникать сокращение гладкой мышцы. Скрытый период одиночного сокращения этой мышцы значительно больше, чем скелетной мышцы, достигая, например, в кишечной мускулатуре кролика 0,25- 1 секунды. Продолжительность самого сокращения тоже велика (рис. 152 ): в желудке кролика она достигает 5 секунд, а в желудке лягушки - 1 минуты и более. Особенно медленно протекает расслабление после сокращения. Волна сокращения распространяется по гладкой мускулатуре тоже очень медленно, она проходит всего около 3 см в секунду. Но эта медленность сократительной деятельности гладких мышц сочетается с большой их силой. Так, мускулатура желудка птиц способна поднимать 1 кг на 1см2 своего поперечного сечения.

Тонус гладкой мышцы

Вследствие медленности сокращения гладкая мышца даже при редких ритмических раздражениях (для желудка лягушки достаточно 10-12 раздражений в минуту) легко переходит в длительное состояние стойкого сокращения, напоминающее тетанус скелетных мышц. Однако энергетические расходы при таком стойком сокращении гладкой мышцы очень малы, что отличает это сокращение от тетануса поперечнополосатой мышцы.

Причины, вследствие которых гладкие мышцы сокращаются и расслабляются много медленнее, чем скелетные, полностью еще не выяснены. Известно, что миофибриллы гладкой мышцы так же, как и скелетной мышцы, состоят из миозина и актина. Однако в гладких мышцах нет поперечной исчерченности, нет мембраны Z и они гораздо богаче саркоплазмой. По-видимому, эти особенности структуры гладких мышечных волн и обусловливают медленный темп сократительного процесса. Этому соответствует и относительно низкий уровень обмена веществ гладких мышц.

Автоматия гладких мышц

Характерной особенностью гладких мышц, отличающей их от скелетных, является способность к спонтанной автоматической деятельности. Спонтанные сокращения можно наблюдать при исследовании гладких мышц желудка, кишок, желчного пузыря, мочеточников и ряда других гладкомышечных органов.

Автоматия гладких мышц имеет миогенное происхождение. Она присуща самим мышечным волокнам и регулируется нервными элементами, которые находятся в стенках гладкомышечных органов. Миогенная природа автоматии доказана опытами на полосках мышц кишечной стенки, освобожденных путем тщательной препаровки от прилежащих к ней нервных сплетений. Такие полоски, помещенные в теплый растввр Рингера-Локка, который насыщается кислородом, способны совершать автоматические сокращения. При последующей гистологической проверке было обнаружено отсутствие в этих мышечных полосках нервных клеток.

В гладких мышечных волокнах различают следующие спонтанные колебания мембранного потенциала: 1) медленные волны деполяризации с длительностью цикла порядка нескольких минут и амплитудой около 20 мв; 2) малые быстрые колебания потенциала, предшествующие возникновению потенциалов действия; 3) потенциалы действия.

На все внешние воздействия гладкая мышца реагирует изменении частоты спонтанной ритмики, следствием которой являются сокращения и расслабления мышцы. Эффект раздражения гладкой мускулатуры кишки зависит от соотношения между частотой стимуляции и собственной частотой спонтанной ритмики: при низком тонусе - при редких спонтанных потенциалах действия - приложенное раздражение усиливает тонус при высоком же тонусе в ответ на раздражение возникает расслабление, так как чрезмерное учащение импульсации приводит к тому, что каждый следующий импульс попадает в рефрактерную фазу от предыдущего.

Физиологические свойства гладких мышц связаны с особенностью их строения, уровнем обменных процессов и значительно отличаются от особенностей скелетных мышц.

Гладкие мышцы находятся во внутренних органах, в сосудах и коже.

Они менее возбудимы, чем поперечнополосатые. Для их возбуждения требуется более сильный и более длительный раздражитель. Сокращение гладкой мускулатуры происходит медленнее и продолжительнее. Характерная особенность гладких мышц – их способность к автоматической деятельности, которая обеспечивается нервными элементами (они способны сокращаться под влиянием рождающихся в них импульсов возбуждения).

Гладкая мускулатура, в отличие от поперечнополосатой, обладает большой растяжимостью. В ответ на медленное растяжение мышца удлиняется, а напряжение ее не увеличивается. Благодаря этому при наполнении внутреннего органа давление в его полости не повышается. Способность сохранять приданную растяжением длину без изменения напряжения называют пластическим тонусом. Он является физиологической особенностью гладких мышц.

Для гладких мышц характерны медленные движения и длительные тонические сокращения. Главным раздражителем является быстрое и сильное растяжение.

Гладкие мышцы иннервируются симпатическими и парасимпатическими нервами, которые оказывают на них регулирующее влияние, а не пусковое, как на скелетные мышцы, обладают высокой чувствительностью к некоторым биологически активным веществам (ацетилхолин, адреналин, норадреналин, серотонин и др.).

Утомление Мышц

Физиологическое состояние временного снижения работоспособности, возникающее в результате деятельности мышц, называется утомлением . Оно проявляется в уменьшении мышечной силы и выносливости, возрастании количества ошибочных и лишних действий, изменении частоты сердечных сокращений и дыхания, увеличении артериального давления, времени переработки поступающей информации, времени зрительномоторных реакций. При утомлении ослабляются процессы внимания, его устойчивость и переключаемость, ослабляются выдержка, настойчивость, снижаются возможности памяти, мышления. Выраженность изменений состояния организма зависит от глубины утомления. Изменения могут отсутствовать при незначительном утомлении и приобретать крайне выраженный характер при глубоких стадиях утомления организма.

Субъективно утомление проявляется в виде ощущения усталости, вызывающего желание прекратить работу или снизить величину нагрузки.

Различают 3 стадии утомления. В первой стадии производительность труда практически не снижена, чувство усталости выражено незначительно. Во второй стадии производительность труда снижена существенно, чувство усталости выражено ярко. В третьей стадии производительность труда может быть снижена до нулевых показателей, а чувство усталости сильно выражено, сохраняется после отдыха и иногда еще до возобновления работы. Эту стадию иногда характеризуют как стадию хронического, патологического утомления, или переутомления.

Причинами утомления являются накопление продуктов обмена веществ (молочная, фосфорная кислоты и др.), уменьшение запаса кислорода и истощение энергетических ресурсов.

В зависимости от характера труда различают физическое и умственное утомление, механизмы развития, которых во многом сходны. В обоих случаях процессы утомления раньше всего развиваются в нервных центрах. Одним из показателей этого является снижение умственной работоспособности при физическом утомлении, а при умственном утомлении – снижение эффективности мышечной деятельности.

Период восстановления после работы называется отдыхом . И.П.Павлов отдых оценивал как состояние особой деятельности по восстановлению клетками своего нормального состава. Отдых может быть пассивным (полный двигательный покой) и активным . Активный отдых включает разные формы умеренной деятельности, но отличные от той, которой характеризовалась основная работа. Представление об активном отдыхе возникло из опытов И.М.Сеченова, которыми было установлено, что лучшее восстановление работоспособности работавших мышц наступает не при полном покое, а при умеренной работе других мышц. И.М.Сеченов объяснял это тем, что возбуждающее действие афферентных импульсов, поступающих во время отдыха от других работающих мышц в ЦНС, способствует лучшему и более быстрому восстановлению работоспособности утомленных нервных центров и мышц.

Значение Тренировки

Процесс систематического воздействия на организм физических упражнений с целью повышения или сохранения на высоком уровне физической или умственной работоспособности и устойчивости человека к воздействию окружающей среды, неблагоприятным условиям обитания и изменения внутренней среды называют тренировкой. Сущность наступающих изменений в организме при тренировке сложна и разностороння. Она включает физиологические и морфологические сдвиги. Конечный результат воздействия физических упражнений состоит в выработке новых сложных условных рефлексов, повышающих функциональные возможности организма.

В силу следовых процессов в коре большого мозга от повторяющихся упражнений создается определенная связь – корковый стереотип. Корковый стереотип, выраженный в двигательных актах, И.П.Павлов назвал динамическим (подвижным) стереотипом. В процессе тренировки новых двигательных навыков движения мышц становятся все более экономными, координированными, а двигательные акты высоко автоматизированными. Одновременно устанавливаются более правильные соотношения между мощностью производимой мышцами работы и интенсивностью сопряженных вегетативных функций (кровообращения, дыхания, выделительных процессов и др.). Систематически тренируемые мышцы утолщаются, становятся более плотными и упругими, повышается их возможность к большим силовым напряжениям.

Различают общую и специальную тренировку. Первая имеет целью развитие функциональной адаптации всего организма к физическим нагрузкам, а вторая направлена на восстановление функций, нарушенных в связи с заболеванием или травмой. Специальная тренировка эффективна только в сочетании с общей. Тренировка физическими упражнениями оказывает многогранное положительное воздействие на организм человека, если проводится с учетом его физиологических возможностей.

Гладкие мышцы образуют стенки (мышечный слой) внутренних органов и кровеносных сосудов.

Микроскопическое строение гладких и поперечнополосатых мышц различно.

Физиологические свойства гладких мышц в связи с особенностями их строения и уровня обменных процессов значительно отличаются от физиологических свойств поперечнополосатых мышц.

Гладкие мышцы менее возбудимы, чем поперечнополосатые. Возбуждение в гладких мышцах может передаваться с одного волокна на другое, в отличие от нервных волокон и волокон поперечнополосатых мышц. Возбуждение по гладким мышцам распространяется с небольшой скоростью - 2-15 см/с.

Сокращение гладкой мускулатуры происходит более медленно и длительно. Так, сокращение гладкой мускулатуры кишечника кролика может продолжаться 5 с, еще более медленно протекает расслабление.

Вследствие продолжительности сократительного акта гладкая мышца даже под влиянием редких раздражителей может переходить в состояние длительного сокращения, которое напоминает тетанус скелетных мышц. Характерными для гладких мышц являются также длительные тонические сокращения.

Рефракторный период в гладких мышцах более продолжителен, чем в скелетных.

Важным свойством гладкой мышцы является ее большая пластичность, т.е. способность сохранять созданную растяжением длину без изменения напряжения. Данное свойство имеет существенное значение, так как некоторые органы брюшной полости (матка, мочевой пузырь, желчный пузырь) иногда значительно растягиваются.

Характерной особенностью гладких мышц является их способность к автоматии, которая обеспечивается нервными элементами, заложенными в стенках гладкомышечных органов.

Адекватным раздражителем для гладких мышц является их быстрое и сильное растяжение, что имеет большое значение для функционирования многих гладкомышечных органов (мочеточник, кишечник и другие полые органы).

Особенностью гладких мышц является также их высокая чувствительность к некоторым биологически активным веществам (ацетилхолин, адреналин, норадреналин, серотонин и другие).

Гладкие мышцы иннервируются симпатическими и парасимпатическими вегетативными нервами, которые, как правило, оказывают противоположное влияние на их функциональное состояние.

Т.О. Продолжительность одиночного мышечного сокращения - 0,1с. Приблизительно фаза укорочения и расслабления для скелетной мышцы одинаково - 0,05с. ЛП длинее, чем ПД.

В гладких мышцах продолжительность от нескольких секунд до нескольких минут. Продолжительность фазы расслабления более продолжительнее. ЛП короче, чем ПД.



РАЗДЕЛ: ФИЗИОЛОГИЯ ВОЗБУДИМЫХ ТКАНЕЙ

ЗАНЯТИЕ №1

ТЕМА: БИОЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ В ОРГАНИЗМЕ.

ПОТЕНЦИАЛ ПОКОЯ, ПОТЕНЦИАЛ ДЕЙСТВИЯ.

ЗАКОНЫ ВОЗБУЖДЕНИЯ

Продолжительность занятия – 2 часa.

План и организация занятия.

1. Подготовительный этап занятия:

а) организационные мероприятия - 5 мин.

б) проверка и коррекция исходного уровня знаний, посредством разбора материала в устной форме или с использованием учебника - 20 мин.

2. Основной этап занятия:

а) выполнение практических работ - 45 мин.

б) запись протокола исследования - 15 мин.

в) анализ результатов исследования - 10 мин.

3. Конечный этап занятия:

а) контроль конечного уровня усвоения учебного материала тестовым контролем или решением ситуационных задач - 20 мин.

3. Учебные цели занятия.

ЗНАТЬ:

1. Понятия возбудимости и раздражимости.

2. Роль, значение и функции плазматической мембраны клеток.

3. Учение о потенциал зависимых натриевых, калиевых, хлорных, кальциевых каналах.

4. Учение о неравномерном распределении ионов в возбудимых тканях, о трансмембранном электрохимическом градиенте и равновесном потенциале.

5. Мембранно-ионные механизмы происхождения, физические характеристики и физиологическую роль потенциала покоя.

6. Механизм потенциала действия, как проявление распространяющегося возбуждения. Динамику ионных токов при возбуждении.

7. Ионную природу локального ответа и физиологические характеристики, отличающие локальный ответ от распространяющегося возбуждения.

8. Изменение возбудимости в различные фазы генерации потенциала действия. Объяснение лабильности.

9. Закон электротонического потенциала: процессы, происходящие под катодом и анодом, при внеклеточном действии постоянного тока на возбудимые ткани.



10. Законы «силы», «все или ничего», «силы-времени». Аккомодация каналов мембран клеток.

11. Понятие реобазы, хронаксии.

12. История учения об электрических явлениях в возбудимых тканях.

УМЕТЬ:

1. Рисовать схемы развития потенциала покоя и потенциала действия.

2. Рисовать кривые потенциала действия и изменения возбудимости клетки во время его генерации.

4. Рисовать схему эквивалентной электрической модели плазматической мембраны.

5. Приготовлять нервно-мышечный препарат лягушки.

6. Работать с измерительными приборами.

4. Методика проведения занятия:

1.Подготовительный этап занятия.

В начале занятия следует сформулировать его цель и задачи, что студенты должны знать и уметь по окончанию занятия. В соответствии с этим, необходимо объяснить студентам, что знание материала этой темы потребуется для понимания значения роли плазматической мембраны в механизмах функционирования всех клеток организма, а особенно они важны при изучении физиологических свойств и особенностей нервной, мышечной и секреторной тканей. Знание особенностей строения и видов транспорта через плазматическую мембрану позволит студентам объяснить происхождение и поддержание на должном уровне основных констант клеток, механизмов действия гормонов, медиаторов и лекарственных веществ, развитие процессов возбуждения и торможения в клетках организма и выполнение других специфических функций. Все полученные знания будут необходимы при изучении других разделов физиологии, при обучении на последующих теоретических и клинических кафедрах. Следует обратить внимание студентов на то, что в настоящее время основные исследования в мире в области физиологии проводятся на клеточном, мембранном или молекулярном уровне, что без знания этих разделов невозможно объяснить и понять причины различных заболеваний и проводить необходимую терапию.

Основную часть подготовительного этапа занятия необходимо посвятить контролю исходного уровня знаний студентов путем устного или тестового опроса.

2. Основной этап занятия.

Этот этап занятия следует посвятить разбору и коррекции исходного уровня знания студентов, с учетом проведенного контроля. С этой целью рекомендуется провести устный разбор материала по основным вопросам занятия и предложить студентам написать и нарисовать основные формулы, графики и схемы. В процессе разбора учебного материала необходимо выяснить все вопросы занятия, записать основные понятия и формулировки, зарисовать в отчеты схемы, графики и формулы. При этом студенты могут пользоваться любой учебной литературой: учебниками, справочниками, атласами, электронным учебником и другими источниками информации.

Практическая часть : Проведение лабораторных работ в соответствии с рабочей программой.

3. Заключительный этап занятия.

На этом этапе занятия проводится контроль конечного уровня знания студентов, для чего рекомендуется использовать либо тестовый контроль знаний, либо решение ситуационных задач.

В заключение занятия преподаватель проверяет и подписывает протоколы студентов по выполнению лабораторных работ, задает задание для самостоятельной подготовки к следующему занятию.

Лабораторные работы.

1. Приготовление нервно-мышечного препарата лягушки.

Для изучения физиологических свойств мышц и нервов часто используют нервно-мышечный препарат, приготовленный из задних лапок лягушки. Классическим нервно-мышечным препаратом считают икроножную мышцу и седалищный нерв, который ее иннервирует.

Ход работы . Отпрепаровав нерв до коленного сустава, перерезают конечность выше и ниже коленного сустава и получают нервно-мышечный препарат. Для приготовления препарата изолированной мышцы от нервно-мышечного препарата отсекают нерв.

2. Проводимость нерва и её нарушение.

Одним из основных физиологических свойств возбу­димых тканей является возбудимость, которая у различных тканей различна. Для характеристики уровня возбудимости служит порог раздражения, т.е. минимальная сила раздражителя, при действии которой возникает ответная реакция. В экспериментальных условиях для определения возбу­димости мышцы применяют прямой метод ее раздражения, т.е. раздражение, наносимое непосредственно на мышцу. Возбудимость нерва исследуют раздражением нерва, иннервирующего данную мышцу, т.е. методом непрямого раздражения мышцы.

Ход работы . Готовят нервно-мышечный препарат. Подавая на нерв одиночные стимулы с постоян­ной длительностью, например 0,5 мс, постепенно увеличи­вают амплитуду и находят ту минимальную силу раздра­жителя, которая вызывает едва заметное сокращение мыш­цы - это и будет порог раздражения для нерва.

Для определения порога раздражения мышцы на нее наносят прямое раздражение через проводящую цепь ми­ографа, соединенного со стимулятором. Порог раздраже­ния находят так же, как при непрямом раздражении.

Рекомендации к оформлению работы. Зарисуйте схему установки для прямого и непрямого раздражения мышцы, запишите результаты опыта и дайте срав­нительную оценку возбудимости нерва и мышцы. Сделать выводы о различии величин возбудимости нерва и мышца.

3. Опыты Гальвани.

Первый опыт Гальвани.

Ход работы . Готовят препарат двух задних лапок лягушки и подвешивают его на штативе. Берут биметал­лический пинцет, одна бранша которого сделана из меди, а другая - из железа. Медную браншу подводят под нервные сплетения, а другую прикладывают к мышцам лапки. Наблюдают сокращение мышц лапок.

Второй опыт Гальвани (сокращение без металла).

Вторым опытом Гальвани впервые было доказано суще­ствование в тканях «животного электричества», которое возникает между поврежденной и неповрежденной поверх­ностями мышцы. Если эти два участка соединить нервом нервно-мышечного препарата, то возникает ток покоя, который раздражает нерв и вызывает сокращение мышцы.

Ход работы . Набрасыва­ют седалищный нерв таким образом, чтобы он одновре­менно коснулся поврежденной и неповрежденной поверх­ности мышц бедра. При этом происходит сокращение мышц голени.

4. Опыт Маттеучи.

Опыт Маттеучи.

Раздражение нерва токами действия скелетной мышцы (вторичный тетанус). Маттеучи в 1840 г. показал, что сокращение мышцы нервно-мышечно­го препарата может наступить, если нерв этого препарата набросить на сокращающиеся мышцы другого нервно-мы­шечного препарата. На основании этого было сделано заключение, что в мышце при ее возбуждении возникают токи, которые могут стать раздражителем для другого нервно-мышечного препарата. Эти токи были названы, то­ками действия.

Ход работы . Нерв одного нервно-мышечного препарата (с кусочком позвоночника) с помощью стеклян­ного крючка помещают на электроды, которые соединены со стимулятором. На мышцы этого препарата в продольном направлении набрасывают нерв второго нервно-мышечного препарата. Нерв первого нервно-мышечного препарата подвергают ритмическому раздражению. Наблюдают тетаническое сокращение обеих лапок.

5. Зависимость силы ответа от силы раздражителя.

Скелетная мышца на раздражители пороговой силы отвечает минимальным пороговым сокращением. Если силу раздражителя постепенно увеличивать, то амплитуда сокращений скелетной мышцы также будет постепенно возрастать от пороговых до субмаксимальных и максимальных сокращений, после чего увеличение силы раздражителя не вызывает дальнейшего увеличения амплитуды сокращения. Такая реакция скелетной мышцы обусловлена ее строением. Она состоит из множества мышечных волокон, имеющих различную возбудимость и, следовательно, вовлечение их в реакцию идет постепенно: на пороговую силу раздражителя реагируют мышечные волокна с самой высокой возбудимостью, т.е. имеющие самый низкий порог раздражения. По мере увеличения силы раздражителя в сократительный процесс постепенно вовлекаются волокна, имеющие меньшую возбудимость. При максимальной силе раздражителя происходит сокра­щение всех мышечных волокон, составляющих данную мышцу, и поэтому амплитуда сокращений мышцы больше не увеличивается, несмотря на увеличение силы раздражи­теля.

Ход работы . Готовят препарат икроножной мышцы лягушки. Находят порог раздражения для мышцы, который опреде­ляют по ее минимальному сокращению. Далее, увеличивая силу раздражителя, записывают сокращение мышцы на кимографе.

Сделать вывод о зависимости между величиной раздражения и силой сокращения мышц.

6. Действие раздражителей различной природы.

Задача № 1.

При ухудшении кровоснабжения миокарда в межклеточной жидкости повышается концентрация ионов калия. Как и почему это скажется на генерации ПД в клетках миокарда?

Эталон ответа.

При повышении концентрации ионов калия в межклеточной жидкости возникает гиперполяризация мембран волокон миокарда. Значение их критического уровня деполяризации приближается к нулю, в результате чего генерация потенциала действия (ПД) станет невозможна.

Задача № 2.

Как и почему изменится амплитуда ПД клетки

а) при повышении концентрации ионов калия в цитоплазме

б) при повышении концентрации ионов натрия в межклеточной жидкости

в) при увеличении проницаемости мембраны клеток для ионов калия?

Эталон ответа.

Амплитуда ПД при повышении концентрации ионов калия в цитоплазме и увеличении проницаемости клеточной мембраны для этих ионов будет уменьшаться, а при повышении концентрации ионов натрия в межклеточной жидкости будет увеличиваться.

Задача № 3.

Какое практическое значение имеет следствие закона «силы-времени», согласно которому при предельно коротком времени действия сверхсильного раздражителя в ткани не будет возникать возбуждение?

Эталон ответа.

Данное свойство (закон, следствие закона «силы-времени») является биофизической основой метода УВЧ-терапии. Такой электрический ток вследствие своей ультравысокой частоты не успевает вызвать изменение состояния белков каналов и насосов мембран клеток, следовательно, генерации ПД в мышечных клетках и нервных окончаниях не происходит. Однако, вследствие наличия электрического сопротивления тканей происходит их нагревание.

Задача № 4.

Под влиянием местного анестетика в мембране клетки увеличилось число инактивированных натриевых каналов. Как и почему это скажется на параметрах ПД, возникающих в клетке?

Эталон ответа.

При увеличении числа инактивированных натриевых каналов клеточной мембраны уменьшится ее проводимость для ионов натрия. В результате этого уменьшится диффузионный поток положительно заряженных ионов натрия, входящий в клетку во время восходящей фазы ПД. Это приведет к уменьшению крутизны этой фазы и к уменьшению амплитуды ПД.

Задача № 5.

Под влиянием фармакологических факторов в мембране клеток увеличилось число калиевых каналов, которые могут активироваться при генерации ПД клетки. Как и почему это скажется на параметрах ПД клетки?

Эталон ответа.

Если во время генерации ПД увеличится число активированных калиевых каналов клеточной мембраны, то возрастет диффузионный поток положительно заряженных ионов калия, который выходит из клетки, в основном во время нисходящей фазы ПД. Это приведет к уменьшению длительности этой фазы, а, следовательно, и всего ПД в целом. Кроме того, может также несколько уменьшиться амплитуда ПД.

ЗАНЯТИЕ № 2

ТЕМА: ФИЗИОЛОГИЯ МЫШЦ

Гладкие мышцы имеются в стенках большинства органов пищеварения, сосудов, выводных протоков различных желез, мочевыводящей системы. Они являются непроизвольными и обеспечивают перистальтику органов пищеварения и мочевыводящей системы, поддержание тонуса сосудов. В отличие от скелетных, гладкие мышцы образованы клетками чаще веретенообразной формы и небольших размеров, не имеющими поперечной исчерченности. Миофибриллы состоят из тонких нитей актина, которые идут в различных направлениях и прикрепляющихся к разным участкам сарколеммы. Миозиновые протофибриллы расположен рядом с актиновыми. Элементы саркоплазматического ретикулума не образуют систему трубочек. Отдельные мышечные клетки соединяются между собой контактами с низким электрическим сопротивлением – нексусами , что обеспечивает распространение возбуждения по всей гладкомышечной структуре.

Свойства:

1. Возбудимость-способность тканей приходить в состояние возбуждения под действием раздражителей пороговой и сверхпороговой силы.

Гладкие мышцы менее возбудимы, чем скелетные: их пороги раздражения выше. Потенциалы действия большинства гладкомышечных волокон имеют малую амплитуду (порядка 60 мв вместо 120 мв в скелетных мышечных волокнах) и большую продолжительность - до 1-3 секунд.

2. Проводимость- способность мышечного волокна передавать возбуждение в виде нервного импульса или потенциала действия на протяжении всего мышечного волокна..

3. Рефрактерность-свойство ткани резко менять свою возбудимость при импульсном возбуждении вплоть до 0.

Рефрактерный период мышечной ткани более продолжителен, чем рефрактерный период нервной ткани.

4. Лабильность-максимальное число полных возбуждений,которое ткань может воспроизвести в единицу времени в точности с ритмом наносимых раздражений. Лабильность меньше,чем у нервной ткани (200-250 имп/с)

5. Сократимость-способность мыш.волокна изменять свою длину или свой тонус. Сокращение гладкой мускулатуры происходит более медленно и длительно. Сокращение развивается за счет кальция, входящего в клетку во время ПД.

Гладкие мышцы имеют и свои особенности:

1) нестабильный мембранный потенциал, который поддерживает мышцы в состоянии

постоянного частичного сокращения – тонуса;

2) самопроизвольную автоматическую активность;

3) сокращение в ответ на растяжение;

4) пластичность (уменьшение растяжения при увеличении растяжения);

5) высокую чувствительность к химическим веществам.

Сосудодвигательный центр, его составные части, их локализация и значение. Регуляция активности бульбарного сосудодвигательного центра. Особенности рефлекторной регуляции дыхания у лиц пожилого возраста.


Сосудодвигательный центр (СДЦ) в продолговатом мозге, на дне IV желудочка (В.Ф. Овсянников, 1871 г., открыт методом перерезки ствола мозга на различных уровнях), представлен двумя отделами (прессорный и депрессорный). Сосудодвигательный центр В. Ф. Овсянниковым в 1871 г. было установлено, что нервный центр, обеспечивающий определенную степень сужения артериального русла - сосудодвигательный центр - находится в продолговатом мозге. Локализация этого центра определена путем перерезки ствола мозга на разных уровнях. Если перерезка произведена у собаки или кошки выше четверохолмия, то артериальное давление не изменяется. Если перерезать мозг между продолговатым и спинным, максимальное давление крови в сонной артерии понижается до 60-70 мм рт. ст. Отсюда следует, что сосудодвигательный центр локализован в продолговатом мозге и находится в состоянии тонической активности, т. е. длительного постоянного возбуждения. Устранение его влияния вызывает расширение сосудов и падение артериального давления. Более детальный анализ показал, что сосудодвигательный центр продолговатого мозга расположен на дне IV желудочка и состоит из двух отделов - прессорного и депрессорного. Раздражение первого вызывает сужение артерий и подъем артериального давления, а раздражение второго - расширение артерий и падение давления.

В настоящее время считают, что депрессорный отдел сосудодвигательного центра вызывает расширение сосудов, понижая тонус прессорного отдела и снижая, таким образом, эффект сосудосуживающих нервов. Влияния, идущие от сосудосуживающего центра продолговатого мозга, приходят к нервным центрам симпатической части вегетативной нервной системы, расположенным в боковых рогах грудных сегментов спинного мозга, где образуются сосудосуживающие центры, регулирующие тонус сосудов отдельных участков тела. Спинномозговые центры способны через некоторое время после выключения сосудосуживающего центра продолговатого мозга немного повысить давление крови, снизившееся вследствие расширения артерий и артериол. Кроме сосудодвигательного центра продолговатого и спинного мозга, на состояние сосудов оказывают влияние нервные центры промежуточного мозга и больших полушарий.

Гладкие мышцы представлены в полых органах, кровеносных сосудах и коже. Гладкие мышечные волокна не имеют поперечной исчерченности. Клетки укорачиваются в результате относительного скольжения нитей. Скорость скольжения и скорость расщепления аденозинтрифосфата в 100-1000 раз меньше, чем в . Благодаря этому гладкие мышцы хорошо приспособлены для длительного стойкого сокращения без утомления, с меньшей затратой энергии.

Гладкие мышцы являются составной частью стенок ряда полых внутренних органов и участвуют в обеспечении функций, выполняемых этими органами. В частности, они регулируют кровоток в различных органах и тканях, проходимость бронхов для воздуха, перемещения жидкостей и химуса (в желудке, кишечнике, мочеточниках, мочевом и желчном пузыре), сокращение матки при родах, размер зрачка, кожного рельефа.

Гладкомышечные клетки имеют веретенообразную форму, длину 50-400 мкм, толщину 2-10 мкм (рис. 5.6).

Гладкие мышцы относятся к непроизвольным мышцам, т.е. их сокращение не зависит от воли макроорганизма. Особенности двигательной деятельности желудка, кишечника, кровеносных сосудов и кожи в известной степени определяют физиологические особенности гладких мышц этих органов.

Характеристика гладкой мускулатуры

  • Обладает автоматизмом (влияние интрамуральной нервной системы носит корригирующий характер)
  • Пластичность — способность долго сохранять длину без изменения тонуса
  • Функциональный синтиций — отдельные волокна разделены, но имеются особые участки контакта — нексусы
  • Величина потенциала покоя — 30-50 мВ, амплитуда потенциала действия меньше, чем у клеток скелетных мышц
  • Минимальная «критическая зона» (возбуждение возникает, если возбуждается некоторое минимальное число мышечных элементов)
  • Для взаимодействия актина и миозина необходим ион Ca 2+ который поступает извне
  • Длительность одиночного сокращения велика

Особенность гладких мышц — их способность проявлять медленные ритмические и длительные тонические сокращения. Медленные ритмические сокращения гладких мышц желудка, кишечника, мочеточников и других полых органов способствуют перемещению их содержимого. Длительные тонические сокращения гладких мышц сфинктеров полых органов препятствуют произвольному выходу их содержимого. Гладкие мышцы стенок кровеносных сосудов, также находятся в состоянии постоянного тонического сокращения и влияют на уровень артериального давления крови и кровоснабжение организма.

Важным свойством гладких мышц является их мистичность, т.е. способность сохранять вызванную растяжением или деформацией форму. Высокая пластичность гладких мышц имеет большое значение для нормального функционирования органов. Например, пластичность мочевого пузыря позволяет при его наполнении мочой профилактировать повышение в нем давления без нарушения процесса мочеобразования.

Чрезмерное растяжение гладких мышц вызывает их сокращение. Это происходит в результате деполяризации мембран клеток, вызванной их растяжением, т.е. гладкие мышцы обладают автоматизмом.

Сокращение, вызываемое растяжением, играет важную роль в авторегуляции тонуса кровеносных сосудов, перемещении содержимого желудочно-кишечного тракта и других процессах.

Рис. 1. А. Волокно скелетной мышцы, клетка сердечной мышцы, гладкая мышечная клетка. Б. Саркомер скелетной мышцы. В. Строение гладкой мышцы. Г. Механограмма скелетной мышцы и мышцы сердца.

Автоматизм в гладких мышцах обусловлен наличием в них особых пейсмекерных (задающих ритм) клеток. По своей структуре они идентичны другим гладкомышечным клеткам, но обладают особыми электрофизиологическими свойствами. В этих клетках возникают пейсмекерные потенциалы, деполяризующие мембрану до критического уровня.

Возбуждение гладкомышечных клеток вызывает увеличение входа ионов кальция в клетку и высвобождение этих ионов из саркоплазматического ретикулума. В результате повышения концентрации ионов кальция в саркоплазме активируются сократительные структуры, но механизм активации их в гладком волокне отличается от механизма активации в поперечно-полосатых мышцах. В гладкой клетке кальций взаимодействуете белком кальмодулином, который активирует легкие цепи миозина. Они соединяются с активными центрами актина в протофибриллах и совершают «гребок». Гладкие мышцы расслабляются пассивно.

Гладкие мышцы относятся к непроизвольным, и их не зависит от воли животного.

Физиологические свойства и особенности гладких мышц

Гладкие мышцы, так же, как и скелетные, обладают возбудимостью, проводимостью и сократимостью. В отличие от скелетных мышц, обладающих эластичностью, гладкие мышцы имеют пластичность — способность длительное время сохранять приданную им при растяжении длину без увеличения напряжения. Такое свойство важно для выполнения функции депонирования пищи в желудке или жидкостей в желчном и мочевом пузыре.

Особенности возбудимости гладкомышечных клеток в определенной мере связаны с низкой разностью потенциалов на мембране в покое (E 0 = (-30) — (-70) мВ). Гладкие миоциты могут обладать автоматией и самопроизвольно генерировать потенциал действия. Такие клетки — водители ритма сокращения гладких мышц имеются в стенках кишечника, венозных и лимфатических сосудов.

Рис. 2. Строение гладкомышечной клетки (A. Guyton, J. Hall, 2006)

Длительность ПД гладких миоцитов может достигать десятков миллисекунд, так как ПД в них развивается преимущественно за счет входа ионов Са 2+ в саркоплазму из межклеточной жидкости через медленные кальциевые каналы.

Скорость проведения ПД по мембране гладких миоцитов малая — 2-10 см/с. В отличие от скелетных мышц возбуждение может передаваться с одного гладкого миоцита на другие, рядом лежащие. Такая передача происходит благодаря наличию между гладкомышечными клетками нексусов, обладающих малым сопротивлением электрическому току и обеспечивающих обмен между клетками ионов Са 2+ и другими молекулами. В результате этого гладкая мышца проявляет свойства функционального синтиция.

Сократимость гладкомышечных клеток отличается длительным латентным периодом (0,25-1,00 с) и большой длительностью (до 1 мин) одиночного сокращения. Гладкие мышцы развивают малую силу сокращения, но способны длительно находиться в тоническом сокращении без развития утомления. Это связано с тем, что на под/держание тонического сокращения гладкая мышца расходует в 100-500 раз меньше энергии, чем скелетная. Поэтому расходуемые гладкой мышцей запасы АТФ успевают восстанавливаться даже во время сокращения и гладкие мышцы некоторых структур организма практически постоянно находятся в состоянии тонического сокращения. Абсолютная сила гладкой мышцы составляет около 1 кг/см 2 .

Механизм сокращения гладкой мышцы

Важнейшей особенностью гладкомышечных клеток является то, что они возбуждаются под влиянием многочисленных раздражителей. в естественных условиях инициируется только нервным импульсом, приходящим к . Сокращение же гладкой мышцы может быть вызвано как влиянием нервных импульсов, так и действием гормонов, нейромедиаторов, простагландинов, некоторых метаболитов, а также воздействием физических факторов, например растяжением. Кроме того, возбуждение и сокращение гладких миоцитов может произойти спонтанно — за счет автоматик.

Способность гладких мышц отвечать сокращением на действие разнообразных факторов создаст значительные трудности для коррекции нарушений тонуса этих мышц в медицинской практике. Это видно на примерах трудностей лечения бронхиальной астмы, артериальной гипертензии, спастического колита и других заболеваний, требующих коррекции сократительной активности гладких мышц.

В молекулярном механизме сокращения гладкой мышцы также имеется ряд отличий от механизма сокращения скелетной мышцы. Нити актина и миозина в гладкомышечных клетках располагаются менее упорядочение, чем в скелетных, и поэтому гладкая мышца не имеет поперечной исчерченности. В актиновых нитях гладкой мышцы нет белка тропонина и центры актина всегда открыты для взаимодействия с головками миозина. В то же время головки миозина в состоянии покоя не энергизированы. Для того чтобы произошло взаимодействие актина и миозина, необходимо фосфорилировать головки миозина и придать им избыток энергии. Взаимодействие актина и миозина сопровождается поворотом головок миозина, при котором актиновые нити втягиваются между миозиновыми и происходит сокращение гладкого миоцита.

Фосфорилирование головок миозина производится при участии фермента киназы легких цепей миозина, а дефосфорилирование — с помощью фосфатазы. Если активность фосфатазы миозина преобладает над активностью киназы, то головки миозина дефосфорилируются, связь миозина и актина разрывается и мышца расслабляется.

Следовательно, чтобы произошло сокращение гладкого миоцита, необходимо повысить активность киназы легких цепей миозина. Ее активность регулируется уровнем ионов Са 2+ в саркоплазме. Нейромедиаторы (ацетилхолин, норадрсналин) или гормоны (вазопрессин, окситоцин, адреналин) стимулируют свой специфический рецептор, вызывая диссоциацию G-белка, а-субъединица которого далее активирует фермент фосфолипазу С. Фосфолигтза С катализирует образование инозитолтрисфосфата (ИФЗ) и диацилглицерола из фосфо-инозитолдифосфата мембраны клетки. ИФЗ диффундирует к эндоплазматическому ретикулуму и после взаимодействия со своими рецепторами вызывает открытие кальциевых каналов и высвобождение ионов Са 2+ из депо в цитоплазму. Увеличение содержания ионов Са 2+ в цитоплазме является ключевым событием для инициации сокращения гладкого миоцита. Увеличение содержания ионов Са 2+ в саркоплазме достигается также за счет его поступления в миоцит из внеклеточной среды (рис. 3).

Ионы Са 2+ образуют комплекс с белком кальмодулином, и комплекс Са 2+ -кальмодулин повышает киназную активность легких цепей миозина.

Последовательность процессов, приводящих к развитию сокращения гладкой мышцы, можно описать следующим образом: вход ионов Са 2+ в саркоплазму — активация кальмодулина (путем образования комплекса 4Са 2 -кальмодулин) — активация киназы легких цепей миозина — фосфорилирование головок миозина — связывание головок миозина с актином и поворот головок, при котором нити актина втягиваются между нитями миозина — сокращение.

Рис. 3. Пути поступления ионов Са 2+ в саркоплазму гладкомышечной клетки (а) и удаления их из саркоплазмы (б)

Условия, необходимые для расслабления гладкой мышцы:

  • снижение (до 10-7 М/л и менее) содержания ионов Са 2+ в саркоплазме;
  • распад комплекса 4Са 2+ -кальмодулин, приводящий к снижению активности киназы легких цепей миозина — дефосфорилирование головок миозина под влиянием фосфатазы, приводящее к разрыву связей нитей актина и миозина.

В этих условиях эластические силы вызывают относительно медленное восстановление исходной длины гладкомышечного волокна и его расслабление.