Свойства сердечной мышцы. Сердечная мышца человека, ее особенности и функции Физиологические свойства сердечной мышцы кратко

  • 18.02.2024

Основными свойствами сердечной мышцы, определяющими непрерывное ритмическое сокращение сердца в течение всей жизни организма, являются автоматия, возбудимость, проводи­мость и сократимость.

Автоматия. Под автоматией понимают способность сердеч­ной мышцы ритмически возбуждаться и сокращаться без каких-иибо внешних по отношению к сердцу воздействий, т.е. без участия нервной системы и гуморальных факторов, доставля­емых к сердцу кровью.

Доказательством автоматии сердца послужили следующие на­блюдения и эксперименты.

Изолированное сердце, т. е. выведенное из организма и поме­щенное в питательный раствор, продолжает самопроизвольно со­кращаться. Даже разрезанное на кусочки, оно сокращается в том же ритме, что и у здорового животного. Если у животного денер-вировать сердце, т. е. перерезать все нервные стволы, подходящие к сердцу, оно продолжает сокращаться.

На способности работать без воздействия внешних раздражи­телей основана пересадка сердца. Оживление остановившегося сердца достигается восстановлением спонтанной активности сердца, его автоматии.

В чем причина такого уникального свойства сердца? У боль­шинства беспозвоночных животных автоматия связана с нервны­ми ганглиями, расположенными вблизи сердца, т. е. имеет ней-рогенную природу. У всех же позвоночных животных и у части беспозвоночных автоматия сердца обусловлена не нервными, а мышечными клетками, которые самопроизвольно деполяризу­ются после каждого потенциала действия. Эти клетки называ­ются пейсмекерами, или «задающими сердечный ритм», или во­дителями сердечного ритма. Такая теория автоматии сердца на­зывается миогенной.

Способностью к автоматии обладают атипичные мышечные клетки, составляющие проводящую систему сердца.

Ведущую роль в автоматии играет синусный узел. Он обладает наиболее высокой активностью по сравнению с други­ми участками проводящей системы, частота импульсации в нем наиболее высокая, и он задает определенную частоту сокращения сердца в состоянии физиологического покоя. Такой ритм обычно называют синусным ритмом, а синусный узел - водителем ритма сердца первого порядка.

Если отделить лигатурой синусный узел от предсердий (опыт Станниуса), то обычно сердце останавливается. Однако через не­которое время оно снова начинает сокращаться, но в более редком ритме. Этот ритм «задает» следующий узел проводящей систе­мы - атриовентрикулярный. Более редкие сокращения сердца обусловлены тем, что возбудимость атриовентрикулярного узла меньше, чем синусного. Этот узел называют водителем ритма сердца второго порядка. Если же и атриовентрикулярный узел пе­рестает генерировать возбуждение, то водителем ритма сердца ста­новится пучок Гиса, но его возбудимость еще меньше; пучок Гиса называют водителем ритма третьего порядка.

В обычных условиях атриовентрикулярный узел и пучок Гиса только проводят возбуждение от синусного узла. Их собственная автоматия как бы подавлена главным пейсмекером, и только при развитии патологического процесса, прекращающего функцию


синусного узла, свой ритм навязывают нижележащие узлы. Они являются латентными, или скрытыми, или потенциальными пейсмекерами.

Какова природа автоматии? Методами электрофизиологии ус­тановлено, что потенциал действия (ПД) клеток проводящей сис­темы отличается от других мышечных и нервных клеток. Во время расслабления сердца - диастолы - начинается медленно нараста­ющая деполяризация мембраны, которая затем переходит в фазу быстрой деполяризации (рис. 6.3, А). Фаза реполяризации в пейс-мекерах довольно продолжительная, в пейсмекерах синусного узла она имеет выраженное плато вместо пика потенциала. Сразу пос­ле возвращения мембранного потенциала к уровню потенциала покоя снова начинается медленная диастолическая деполяриза­ция мембраны, и когда разность потенциалов между наружной и внутренней поверхностями мембраны уменьшается до определен­ного критического, или порогового уровня, внезапно возникает новый крутой сдвиг электрического заряда клетки, что свидетель­ствует о ее возбуждении.






Интервал между двумя ПД зависит от длительности медлен­ной диастолической деполяризации, ее величины и порогового уровня сердечного ПД. Если скорость деполяризации уменыиает-

Ся (например, при охлаждении синусного узла), то пороговый уровень деполяризации наступает позднее, частота ПД и сокраще­ний сердца уменьшаются. При возрастании скорости деполяриза­ции мембраны, напротив, пороговый уровень деполяризации воз­никает раньше и это приводит к учащению возбуждения сердца. Отчасти этим объясняется учащение сердечной деятельности при повышении температуры тела.

Медленная диастолическая деполяризация обусловлена осо­бенностями ионной проницаемости мембраны пейсмекеров. Как и в других клетках, электрические процессы в мембранах миокар­да являются следствием пассивного и активного перемещения ионов натрия и калия через тончайшие каналы (поры) в мембра­не, проницаемость которых регулируется заряженными частица­ми - ионами Са 2+ или Мп 2 . Медленная диастолическая депо­ляризация объясняется тем, что во время реполяризации часть натриевых каналов не инактивируется и осуществляется медлен­ный вход сначала натрия, а затем кальция в мембрану. Когда ко­личество ионов натрия, проникших в клетку, снизит мембранный потенциал до критического уровня, наступает быстрая фаза деполя­ризации и ПД достигает своего максимального уровня.

В теории об автоматии пейсмекеров еще много неясного, и раскрытие тончайших механизмов электрических процессов, происходящих в сердце, - актуальная задача современной кар­диологии.

Возбудимость. Возбудимость - свойство сердечной мышцы переходить в состояние возбуждения под влиянием различных раздражителей.

В естественных условиях раздражителем является ПД, возни­кающий в синусном узле и распространяющийся по проводя­щей системе сердца до рабочих кардиомиоцитов. При некоторых заболеваниях сердца раздражение может возникать в других его участках, которые генерируют собственные ПД, и тогда сердеч­ный ритм будет нарушен из-за взаимодействия разных по частоте и фазе ПД. В экспериментах на животных в качестве раздражите­лей могут быть использованы механические, термические или хи­мические воздействия, если их величина превышает порог возбу­димости сердца.

При болезнях сердца, сопровождающихся нарушением сердеч­ного ритма, больным вживляют в сердце миниатюрные электро­ды, питающиеся от батареек. Импульсы тока подаются непосред­ственно на сердце и возбуждают в нем ритмические импульсы. При внезапной остановке сердца или нарушении синхронизации отдельных мышечных волокон возможно воздействие на сердце прямо через кожный покров сильным коротким электрическим разрядом напряжением в несколько кВт. Это вызывает одновре­менное возбуждение всех мышечных волокон, после чего восста­навливается работа сердца.


Во время возбуждения в сердце возникают физико-хими­ческие, морфологические и биохимические изменения, кото­рые приводят к сокращению рабочего миокарда. Одними из ранних признаков возбуждения являются активация натриевых каналов и диффузия ионов натрия из межклеточной жидкости через мембрану, что приводит к ее деполяризации и возник­новению ПД.

В клетках рабочего миокарда ПД равен 80...90 мВ, при ПД Ю0...120мВ медленная диастолическая деполяризация в отличие от пейсмекеров отсутствует. Скорость нарастания деполяризации велика, восходящая часть ПД очень крутая, но реполяризация протекает замедленно, и мембрана остается деполяризованной в течение сотен миллисекунд (см. рис. 6.3, Б).

Таким образом, длительность ПД в миокардиоцитах во много раз больше, чем в других мышечных волокнах. Благодаря этому все мышечные волокна предсердий или желудочков успевают со­кратиться до того, как какое-либо из этих волокон начнет рас­слабляться. Поэтому фаза реполяризации продолжается в течение всей систолы. Во время развития ПД возбудимость сердца, как и других возбудимых тканей, изменяется. Во время деполяри­зации возбудимость сердца резко снижается. Это - фаза аб­солютной рефрактерности. Причиной ее является инактивация натриевых каналов, что прекращает поступление новых ионов натрия в мембрану. Если в скелетной мышце абсо­лютная рефрактерность очень кратковременная, измеряется деся­тыми долями миллисекунды и заканчивается в начале сокращения мышцы, то в сердце абсолютная невозбудимость продолжается весь период систолы. Практически это означает, что если во время сис­толы на сердце действует какой-либо раздражитель, даже сверх­пороговый, то сердце на него не реагирует. Поэтому в отличие от скелетных мышц сердце не способно к тетаническим сокращениям и защищено от слишком быстрого повторного возбуждения и со­кращения. Все сокращения сердечной мышцы одиночные. При очень большой частоте импульсов возбуждения сердце сокращает­ся не на каждый ПД, а на только те из них, которые поступают по окончании абсолютной рефрактерности.

Во время нисходящей фазы реполяризации, которая совпада­ет с началом расслабления сердечной мышцы, возбудимость серд­ца начинает восстанавливаться. Это - фаза относитель­ной рефрактерности. Если в начале диастолы на сердце действует какой-либо дополнительный раздражитель, то сердце готово ответить на него новой волной возбуждения. Внеочеред­ное возбуждение и сокращение сердца под действием раздра­жителя в период относительной рефрактерности называется экстрасистолой.

Если очаг внеочередного возбуждения находится в синусном узле, то это приводит к преждевременному возникновению сер-

дечного цикла, при этом после­довательность сокращений пред­сердий и желудочков не изменя­ется. Если же возбуждение возни­кает в желудочках, то после вне­очередного сокращения (экстра­систолы) появляется удлинен­ная пауза. Интервал между экст­расистолой и следующей (очередной) систолой желудочков на­зывается компенсаторной паузой (рис. 6.4.).

Компенсаторная пауза объясняется тем, что экстрасистола, как и всякое сокращение сердечной мышцы, сопровождается рефрак­терной паузой. Очередной импульс, возникающий в синусном узле, приходит в желудочки во время абсолютной рефрактерное™ и не вызывает их сокращения. Новое сокращение наступит лишь в ответ на следующий импульс, когда возбудимость миокарда вос­становится.

После относительной рефрактерности в сердце наступает очень короткий период повышенной возбудимости - экзаль­тации, когда сердце готово ответить даже на подпороговое раздражение.

Проводимость. Проводимость - свойство сердечной мышцы проводить возбуждение.

Как уже сказано, импульс возбуждения (ПД), возникая в пейс-мекерах синусного узла, распространяется сначала на предсер­дия. В предсердиях, где очень небольшое количество проводя­щих атипичных мышечных волокон, возбуждение распространя­ется не только по ним, но и по рабочим кардиомиоцитам. Это объясняет небольшую скорость распространения возбуждения в предсердиях.

Поскольку синусный узел расположен в правом предсердии, а скорость передачи ПД невелика, то возбуждение правого предсер-


дия начинается немного раньше, чем левого. Сокращение же ле­вого и правого предсердий происходит одновременно.

После того как возбуждение охватит мышцы предсердий, они сокращаются, а возбуждение концентрируется и задерживается в атриовентрикулярном узле. Атриовентрикулярная задержка длится до окончания сокращения предсердий, и только после этого воз­буждение переходит на пучок Гиса. Таким образом, биологическое значение атриовентрикулярной задержки заключается в обеспече­нии последовательности сокращений предсердий и желудочков. Одновременное их сокращение иногда бывает при очень серьезной патологии, когда возбуждение возникает не в синусном узле, а в ат­риовентрикулярном и распространяется в обе стороны от атриовен-трикулярного узла - и в предсердия, и в желудочки. В таком случае наступает резкое нарушение гемодинамики в сердце.

Механизмы атриовентрикулярной задержки не выяснены. Воз­можно, влияет низкая амплитуда ПД в клетках-пейсмекерах дан­ного узла, сильная натриевая инактивация, большое сопротивле­ние межклеточных контактов.

Далее возбуждение распространяется по пучку Гиса, ножкам пучка Гиса и волокнам Пуркинье. Волокна Пуркинье контактиру­ют с сократительными волокнами миокарда, и возбуждение пере­дается с проводящей системы на рабочие мышцы.

Скорость распространения возбуждения в сердце следующая: от синусного узла до атриовентрикулярного узла - 0,5...0,8 м/с; в атриовентрикулярном узле - 0,02...0,05; по проводящей сис­теме желудочков - до 4,0; в сократительной мышце желудоч­ков - 0,4 м/с.

Непосредственная связь проводящей системы сердца с рабочи­ми кардиомиоцитами осуществляется с помощью многочисленных разветвлений волокон Пуркинье. Передача сигналов происходит электрическим путем с небольшой задержкой. Эта задержка воз­буждения способствует суммированию импульсов, неодновременно поступающих по волокнам Пуркинье, и обеспечивает лучшую син­хронизацию процесса возбуждения рабочего миокарда.

В рабочем миокарде имеются контакты как между торцами, так и боковыми поверхностями волокон. Поэтому возбуждение от ос­новных стволов проводящей системы (ножек пучка Гиса) практи­чески одновременно распространяется на правый и левый желу­дочки, обеспечивая их одновременное сокращение.

Направление возбуждения внутри желудочков различно у жи­вотных разного вида. Так, у собак возбуждение вначале возникает на расстоянии нескольких миллиметров от внутренней поверхно­сти мышечной стенки, а затем переходит к эндокарду и эпикарду. У копытных (у коз) направление распространения возбуждения в толще мышечной стенки меняется много раз, и множество воло­кон в районах эндокарда, эпикарда и в глубине стенки активиру­ется практически одновременно.

В межжелудочковой перегородке возбуждение начинается в
центральной части и движется к верхушке и атриовентрикулярной
перегородке, причем верхняя часть желудочков активируется поз- ]
же; однако на правой и левой сторонах межжелудочковой перего­
родки возбуждение возникает одновременно. j

Особенности распространения возбуждения в сердце име­ют значение при анализе электрокардиограммы - записи био­токов сердца.

Сократимость. Сокращение - специфический признак воз­буждения сердечной мышцы. Как и в других мышцах, сокращение сердечных мышечных волокон начинается после распространения потенциала действия по поверхности клеточных мембран и явля­ется функцией миофибрилл. Сократительная система миофиб-рилл представлена четырьмя белками - актином, миозином, тро-понином и тропомиозином. Сокращение миофибрилл сердца в принципе не отличается от сокращений скелетных мышц соглас­но теории скольжения протофибрилл Хаксли.

Суть теории Хаксли заключается в скольжении тонких актино-вых нитей в промежутки между толстыми миозиновыми нитями, ; что приводит к укорочению саркомера. При расслаблении мышцы актиновые нити отодвигаются назад, занимая исходное положение. В механизме скольжения актиновых нитей имеет значение каль­ций, депонированный в саркоплазматическом ретикулуме.

Последовательность электрических и механических процессов при сокращении сердечных мышечных волокон в настоящее вре­мя представляется следующим образом. Потенциал действия, воз­никший на поверхности мембраны мышечного волокна, по попе­речным Т-трубочкам, которые являются впячиваниями наружной мембраны, достигает системы поперечных трубочек, соединенных с цистернами саркоплазматического ретикулума. Полости сарко-плазматического ретикулума не сообщаются ни с Т-трубочками, ни с интерстициальной жидкостью и заполнены раствором с вы­соким содержанием ионов кальция. Полости Т-трубочек имеют такой же состав, что и межклеточная жидкость.

Во время возбуждения активируются натриевые каналы в мембра­нах Т-трубочек и в миоплазму входят ионы натрия и кальция из меж­клеточной жидкости. Большая часть входящего кальция не участвует в сокращении миофибрилл, а пополняет его запасы в саркоплазма­тическом ретикулуме. Под воздействием потенциала действия повы­шается проницаемость мембраны саркоплазматического ретикулума и ионы кальция вьщеляются из него в миоплазму. Ионы кальция связываются с тропонином, что вызывает конформационные изме­нения в его молекуле. Сдвиг тропонин-тропомиозинового стержня I обеспечивает взаимодействие нитей актина и миозина (напомним, Щ что в расслабленной мышце актиновые волокна прикрыты молеку- 1 лами тропонина и тропомиозина, образующими комплекс, препят­ствующий скольжению протофибрилл).


После освобождения актиновых нитей от блокировки тропо-миозиновым комплексом миозиновые головки присоединяются к соответствующему центру актиновых нитей под углом 90°. Затем наступает спонтанный поворот головки на 45°, развивается напря­жение и происходит продвижение актиновой нити на один шаг. Эти процессы осуществляются за счет энергии АТФ, причем рас­пад АТФ катализируется актомиозиновым комплексом, обладаю­щим АТФ-азной активностью.

Когда возбуждение прекращается, содержание ионов кальция в миоплазме снижается вследствие работы кальциевого насоса и закачивания кальция в саркоплазматический ретикулум, причем на работу кальциевого насоса также затрачивается энергия АТФ. В результате снижения содержания кальция в миоплазме тропо-миозиновый комплекс защищает активные центры актомиозино-вых нитей. Нити миозина и актина восстанавливают исходное по­ложение, и мышца расслабляется.

Изложенная теория сокращения сердечной мышцы во многом объясняет экспериментальные и клинические наблюдения о влия­нии кальция и магния - его антагониста на работу сердца. Извест­но, что при перфузии изолированного сердца раствором, не содер­жащим кальция, оно останавливается, а при добавлении кальция в перфузионный раствор сокращения восстанавливаются. Известно также, что сердечные глюкозиды (например, препараты наперстян­ки) увеличивают проницаемость мембран для кальция и тем самым восстанавливают транспорт кальция между саркоплазматическим ретикулумом, наружной мембраной и миоплазмой.

Согласуется с теорией мышечного сокращения и благоприятное влияние на сердце макроэргических веществ, энергия которых ис­пользуется не только для механического сокращения, но и для ра­боты ионных насосов - кальциевого и калиево-натриевого.

Сократительные свойства сердечной мышцы несколько отли­чаются от скелетных. Если скелетная мышца реагирует на раздра­жение в соответствии с его силой, то сердечная мышца подчиня­ется закону Боудича «все или ничего». Его суть заключается в том, что на подпороговые раздражения сердце не сокращается («ниче­го»), а на пороговое раздражение отвечает максимальным сокра­щением («все»), и увеличение силы раздражителя не приводит к увеличению силы сокращения.

В скелетных мышцах закону «все или ничего» подчиняются отдельные мышечные волокна. Дело в том, что потенциал дей­ствия вызывает освобождение кальция из саркоплазматического ретикулума равномерно по всей длине волокна, поэтому оно со­кращается полностью. Но в скелетной мышце имеются волокна с разной степенью возбудимости, поэтому при слабом раздражении сокращаются не все волокна и суммарное сокращение оказывает­ся небольшим. В сердечной же мышце волокна рабочего, т. е. со­кратительного, миокарда соединены межклеточными контактами


(выростами плазматических мембран), что способствует практи­чески одновременному распространению потенциала действия по всей мышце, и она возбуждается и сокращается как единый орган, 1 являясь функциональным синцитием.

Закон Боудича является скорее правилом с определенными ог­раничениями. При подпороговом раздражении сокращение, дей­ствительно, не возникает, но в это время начинается активация натриевых каналов и повышается возбудимость миокардиоцитов. Возникающие местные потенциалы могут суммироваться и вы­звать распространяющийся потенциал действия. С другой сторо­ны, сила сокращения сердца, как хорошо известно, непостоянна и может изменяться в различных условиях жизни.

Другая характерная особенность сердечной мышцы заключает­ся в том, что сила сокращения сердца зависит от степени растяже­ния мышечных волокон во время диастолы, когда полости запол­няются кровью. Это - закон Франка - Старлинга. Указанная за­кономерность объясняется тем, что при растяжении сердца кро­вью во время диастолы актиновые нити несколько вытягиваются из промежутков между миозиновыми, и при последующем сокра­щении возрастает число генерирующих силу поперечных мости­ков. Кроме того, при растягивании сердечной мышцы в ней повы­шается сопротивление упругих элементов, и во время сокращения они играют роль «пружины», увеличивая силу сокращения.

Особенно важное значение закон Франка - Старлинга имеет во время усиленной работы сердца, когда возрастает объем крови, по­ступающей в него во время диастолы. Увеличение силы сокращения приводит к тому, что вся кровь выбрасывается при систоле желудоч­ков в артериальные сосуды, иначе после каждого сокращения в серд­це оставалась бы значительная порция крови. При отсутствии боль­шой нагрузки и небольшом объеме кровотока сила сокращения серд­ца умеренная. Таким образом сердце способно регулировать в извест­ных пределах силу сокращения в зависимости от объема кровотока.

Сердечная мышца, как и скелетная, обладает возбудимостью, способностью проводить возбуждения и сократимостью. К физиологическим особенностям сердечной мышцы относятся удлинённый рефрактерный период и автоматия.

Возбудимость сердечной мышцы. Сердечная мышца менее возбудима, чем скелетная. Для возникновения возбуждения в сердечной мышце необходимо применить более сильный раздражитель, чем для скелетной. Установлено, что величина реакции сердечной мышцы не зависит от силы наносимых раздражений (электрических, механических, химических и т.д.). Сердечная мышца максимально сокращается и на пороговое, и на более сильное по величине раздражение.

Проводимость. Волны возбуждения проводятся по волокнам сердечной мышцы и так называемой специальной ткани сердца с неодинаковой скоростью. Возбуждение по волокнам мышц предсердий распространяется со скоростью 0,8 - 1,0м/с, по волокнам мышц желудочков - 0,8-0,9м/c, по специальной ткани сердца - 2,0 - 4,2м/с. Возбуждение же по волокнам скелетной мышцы распространяется с гораздо большей скоростью, которая составляет 4,7 - 5м/с.

Сократимость. Сократимость сердечной мышцы имеет свои особенности. Первыми сокращаются мышцы предсердий, затем - папиллярные мышцы и субэндокардиальный слой желудочков. В дальнейшем сокращения охватывает и внутренний слой желудочков, обеспечивая тем самым движения крови из полостей желудочков в аорту и лёгочный ствол. Сердце для осуществления механической работы (сокращения) получает энергию, которая освобождается при распаде макроэргических фосфорсодержащих соединений (креатинфосфат, аденозинтрифосфат).

Рефрактерный период. В сердце в отличие от других возбудимых тканей имеется значительно выраженный и удлинённый рефрактерный период. Он характеризуется резким снижением возбудимости ткани в течение её активности.

Различают абсолютный и относительный рефрактерный период. Во время абсолютного рефрактерного периода, какой бы силы не наносили раздражение на сердечную мышцу, она не отвечает на него возбуждением и сокращением. Длительность абсолютного рефрактерного периода сердечной мышцы соответствует по времени систолы и началу диастолы предсердий желудочков. Во время относительного рефрактерного периода возбудимость сердечной мышцы постепенно возвращается к исходному уровню. В этот период сердечная мышца может ответить сокращением на раздражитель сильнее порогового. Относительный рефрактерный период обнаруживается во время диастолы предсердий и желудочков сердца. Благодаря выраженному рефрактерному периоду, который длится дольше, чем период систолы (0,1- 0,3с), сердечная мышца неспособна к титаническому (длительному) сокращению совершает свою работу по типу одиночного сокращения.

Автоматия сердца. Вне организма при определённых условиях сердце способно сокращаться и расслабляться, сохраняя правильный ритм. Следовательно, причина сокращений изолированного сердца лежит в нём самом. Способность сердца ритмически сокращается под влиянием импульсов, возникающих в нём самом, носит название автоматии .

В сердце различают рабочую мускулатуру, представленную поперечнополосатой мышцей, и атипическую, или специальную, ткань, в которой возникает и проводится возбуждение.

У высших позвоночных животных и человека атипическая ткань состоит из:

  • 1. синоаурикулярного узла (описан Кис и Флеком), располагающегося на задней стенке правого предсердия у места впадения половых вен;
  • 2. атриовентрикулярного (предсердно-желудочковый) узла (описан Ашоффом и Таварой), находящегося в правом предсердии вблизи перегородки между предсердиями и желудочками;
  • 3. пучка Гиса (предсердно-желудочковый пучок) (описан Гисом), отходящего от атриовентрикулярного узла одним стволом. Пучок Гиса, пройдя через перегородку между предсердиями и желудочками, делится на две ножки, идущие к правому и левому желудочками. Заканчивается пучок Гиса в толще мышц волокнами Пуркинье. Пучок Гиса - это единственный мышечный мостик, соединяющий предсердия с желудочками.

Сердце человека в разрезе:

1 -- левое предсердие; 2 -- легочные вены; 3 -- митральный клапан; 4 -- левый желудочек; 5 -- межжелудочковая перегородка; 6 -- правый желудочек; 7 -- нижняя полая вена; 8 -- трехстворчатый клапан; 9 -- правое предсердие; 10 -- синусно-предсердный узел; 11 -- верхняя полая вена; 12 -- предсердно-желудочковый узел.

Синоаурикулярный узел является ведущим в деятельности сердца (водитель ритма), в нём возникают импульсы, определяющие частоту сокращений сердца. В норме атриовентрикулярный узел и пучок Гиса являются только передатчиками возбуждений из ведущего узла к сердечной мышце. Однако им присуща способность к автоматии, только выражена она в меньшей степени, чем у синоаурикулярного узла, и проявляется лишь в условиях патологии.

Атипическая ткань состоит из малодифференцированных мышечных волокон. В области синоаурикулярного узла обнаружено значительное количество нервных клеток, нервных волокон и их окончаний, которые здесь образуют нервную сеть. К узлам атипической ткани подходят нервные волокна от блуждающих и симпатических нервов.

По современным представлениям, причина автоматии сердца объясняется тем, что в процессе жизнедеятельности в клетках синоаурикулярного узла накапливаются продукты конечного обмена (СО, молочная кислота и т.д.), которые и вызывают возникновение возбуждения в оптической ткани.

Электрофизиологические исследования сердца, проведённые на клеточном уровне, позволили глубже понять природу автоматики сердца. Установлено, что в волокнах ведущего и атриовентрикулярного узлов вместо стабильного потенциала в период расслабления сердечной мышцы наблюдается постепенное нарастание деполяризации. Когда последняя достигнет определённой величины (5-20мВ), возникает ток, действия ритма называют потенциалами автоматии. Таким образом, наличие диастолической деполяризации объясняет природу ритмической деятельности волокон ведущего узла. В рабочих волокнах сердца электрическая активность во время диастолы отсутствует.

У лягушки атипическая ткань сердца представлена синусным узлом (узел Ремака), расположенным в венозном синусе, и атриовентрикулярным узлом, находящимся в перегородке между предсердиями и желудочком, от которого отходят три нервных стволика, заканчивающихся узлами Догеля в мышце желудочка.

Значение отдельных частей проводящей системы можно изучить при помощи наложения лигатур (нить) на сердце лягушки по Станниусу.

1 - первая лигатура; 2 - первая и вторая лигатуры; 3 - первая, вторая и третья лигатуры.

На рисунке затемнены отделы сердца, которые сокращаются после наложения лигатур.

Первую лигатуру накладывают между венозным синусом и правым предсердием. В результате этого деятельность предсердий и желудочка прекращается, венозный же синус продолжает сокращаться. Это свидетельствует о том, что синусный узел в работе сердца является ведущим и передача импульсов к другим отделам сердца блокируется в результате наложения первой лигатуры.

Вторую лигатуру накладывают между предсердиями и желудочком. Она механически раздражает атриовентрикулярный узел и побуждает его к активности. Вследствие этого начинают сокращаться или предсердия, или желудочек, или все отделы сердца в зависимости от места наложения лигатуры. Однако сокращения предсердий и желудочка происходят в более медленном ритме, чем сокращения венозного синуса. С помощью второй лигатуры доказывают, что атриовентрикулярный узел также обладает автоматией, но выраженной в меньшей степени, чем у синусного узла.

Третью лигатуру накладывают на верхушку сердца. Верхушка сердца при этом не сокращается, т. е. автоматией не обладает. Однако на одиночные раздражения она отвечает одиночным сокращением, как обычная мышца.

Сердечный блок . При нарушении проведения возбуждения из ведущего узла к желудочкам может наблюдаться сердечный блок. Он возникает при нарушении проводимости импульсов в области атриовентрикулярного узла или пучка Гиса. При сердечном блоке, который может быть полным и неполным, отсутствует согласованность между ритмом предсердий и желудочков, что приводит к тяжёлым гемодинамическим расстройствам.

Фибрилляция сердца (трепетание, мерцание). Это нескоординированные сокращения мышечных волокон сердца. Во время фибрилляции сердца одни мышечные волокна могут находиться в состоянии сокращения, другие-расслабления. Фибриллярные подёргивания не могут обеспечить полноценного сокращения сердца и его работы как насоса, нагнетающего кровь в сосуды.

Сердечный цикл и его фазы . В деятельности сердца наблюдаются две фазы: систола (сокращение) и диастола (расслабление). Систола предсердий слабее и короче систолы желудочков: в сердце человека она длится 0,1-0,16с, а систола желудочков-0,3с. Диастола предсердий занимает 0,7-0,75с, желудочков-0,5-0,56с. Общая пауза (одновременная диастола предсердий и желудочков) сердца длится 0,4с. В течение этого периода сердце отдыхает. Весь сердечный цикл продолжается 0,8-0,86с.

Работа предсердий менее сложна, чем желудочков. Систола предсердий обеспечивает поступление крови в желудочки. Затем предсердия переходят в фазу диастолы, которая продолжается в течение всей систолы желудочков. Во время диастолы предсердия заполняются кровью.

Длительность различных фаз сердечного цикла зависит от частоты сердечных сокращений. При более частых сердечных сокращениях длительность каждой фазы уменьшается, особенно диастолы.

Ответы и объяснения

Сердечная мышца относится к возбудимым тканям организма.Возбудимость-это способность тканей давать процесс возбуждение.Возбуждение-это основа функций.Одно из главных особенностей сердечной мышцы-это наличие особых контактов между ее клетками.Эти контакты образованы участками мембран прилегающих соседних клеток и, благодаря их особым свойством, позволяют электрическому току распространяться от клетки к клетке.

Сердце состоит из двух основных групп сердечных клеток: клетки рабочего миокарда, основная роль которых заключается в ритмических сокращениях; и клетки проводящей системы;

1) синусового узла, находящегося в правом предсердии

2) антиовентрикулярного узла, нах-ся на границе предсердий и желудочков;

3) непосредственно проводящей системы;

  • Комментарии
  • Отметить нарушение
  • Познаватель7
  • светило науки

Сердце-это мышца,состоящая из 4 камер (у человека),2 желудочка и 2 предсердия.Этот орган постоянно сокращается и выталкивает кровь.

За 1 сокращение сердце качает 80 мл,за минуту качается около 5 литров,но когда человек работает кол-во сокращений увеличивается.

Особенности серца состоят:

Высокой выносливости и хорошего кровоснабжения.

3.2. Строение сердца. Свойства сердечной мышцы

Сердце расположено в грудной полости в составе органов средостения, смещено влево. Положение и масса сердца зависят от типа телосложения, формы грудной клетки, пола и возраста человека. У женщин в среднем масса сердца меньше (250 г), чем у мужчин (300 г). У спортсменов и людей, занятых физическим трудом, размеры сердца больше, чем у людей, не связанных с большими физическими нагрузками.

Сердце представляет собой полый мышечный орган, разделенный внутри на четыре полости: правое и левое предсердия, правый и левый желудочки. Стенка сердца состоит из трех слоев: внутренний эндотелиальный слой с клапанами – эндокард, средний мышечный слой – миокард и наружный соединительнотканный, покрытый однослойным эпителием – эпикард. Снаружи сердце покрыто околосердечной сумкой – перикардом. В полости между эпикардом и перикардом содержится небольшое количество серозной жидкости, которая уменьшает трение при сокращениях сердца. В левой половине сердца между предсердием и желудочком находится двустворчатый (митральный) клапан, в правой половине – трехстворчатый. В устье аорты есть полулунные клапаны, которые препятствуют возврату крови в желудочек. Средний слой стенки сердца (миокард) образован мышечными клетками – кардиомиоцитами. В предсердиях миокард более тонкий, в желудочках – более толстый (особенно в левом желудочке). Миокард по строению относится к поперечно-полосатым мышцам, но имеет ряд особенностей. Кардиомиоциты плотно соединены друг с другом, образуя функционально единую ткань – синцитий, благодаря чему осуществляется быстрое проведение возбуждения и одновременное сокращение всего сердца. Проведение возбуждения в миокарде ко всем рабочим кардиомиоцитам выполняет проводящая система сердца, которая образована атипичными мышечными клетками.

Благодаря этим клеткам, миокард обладает специфическими свойствами:

1) автоматия – способность атипичных мышечных клеток

проводящей системы генерировать импульсы без каких-либо внешних воздействий;

2) проводимость – способность проводящей системы к передаче возбуждения;

3) возбудимость – способность клеток мышцы сердца возбуждаться под действием импульсов, которые приходят по проводящей системе сердца;

4) сократимость – способность сокращаться под действием этих импульсов.

Импульсы возникают в так называемом водителе ритма (пейсмейкере), который располагается в правом предсердии в устье полых вен – синоатриальный узел или узел первого порядка . Он генерирует импульсы с частотой 60 – 80 сокращений в мин (60 – 80 имп/мин). Узел второго порядка находится в предсердно-желудочковой перегородке – атриовентрикулярный узел . Скорость проведения возбуждения от узла первого порядка к узлу второго порядка составляет 1 м/с, однако в узле второго порядка скорость проведения падает до 0,02 – 0,05 м/с, в результате чего формируется интервал между сокращениями предсердий и сокращениями желудочков. От узла второго порядка начинается пучок Гиса , делящийся на правую и левую ножки, которые далее распадаются на волокна Пуркинье , непосредственно контактирующие с волокнами миокарда. В пучке Гиса скорость проведения достигает 5 м/с, и затем в волокнах Пуркинье скорость проведения опять уменьшается до 1 м/с. Ножки пучка Гиса могут генерировать сокращения с частотой 30 – 40 имп/мин. Отдельные волокна Пуркинье могут генерировать импульсы с частотой 20 сокращений в мин. Снижение способности к автоматии, начиная от основания сердца к верхушке, составляет так называемый убывающий градиент автоматии.

Особенности возбудимости и сократимости сердечной мышцы.

Важной особенностью возбудимости сердечной мышцы является наличие длительного рефрактерного периода , т.е. периода пониженной чувствительности к возбуждению, более длительного, чем в других поперечно-полосатых мышцах. Частота генерации возбуждения клетками проводящей системы и, соответственно, сокращений миокарда определяется длительностью рефрактерной фазы, возникающей после каждой систолы и составляющей в сердце около 0,3 с. Длительный рефрактерный период имеет для сердца важное биологическое значение, так как он предохраняет миокард от слишком частого повторного возбуждения и сокращения. Мышца сердца сокращается по закону «все или ничего», так как в ней есть тесные контакты между отдельными мышечными клетками – так называемые нексусы, или участки тесного контакта (общая часть мембран), в результате чего возбуждение беспрепятственно идет с одной клетки на другую. Миокард – это функционально единая система, поэтому возбуждение быстро охватывает всю мышцу и происходит одновременное сокращение всех мышечных клеток желудочков. Работа сердца прямо зависит от потребления кислорода. Доставка кислорода к тканям сердца выполняется по венечным артериям, которые отходят от аорты. Во время систолы желудочков заслонки перекрывают устья венечных артерий, не пропуская кровь к сердцу. При расслаблении желудочков синусы заполняются кровью, и заслонки перекрывают ей путь обратно в левый желудочек, одновременно открываются устья венечных артерий и кровь поступает к сердцу. Так как сердце нуждается в непрерывном поступлении достаточно больших количеств кислорода к клеткам, то закупорка венечных артерий приводит к тяжелым нарушениям работы сердца и быстрому развитию очагов омертвления (инфаркт миокарда). Отдав кислород, венозная кровь в стенке сердца собирается в передние сердечные вены и венозный синус, которые открываются в полость правого и левого предсердий.

Величина кровотока в сосудах желудочков во время их систолы снижается, поэтому поступление крови, доставка кислорода и питательных веществ к миокарду в основном обеспечивается в период диастолы. Частота сердечных сокращений увеличивается главным образом за счет сокращения диастолы, поэтому при учащении сердцебиений поступление кислорода к миокарду уменьшается.

Для продолжения скачивания необходимо собрать картинку:

Анатомия и физиология сердца: строение, функции, гемодинамика, сердечный цикл, морфология

Строение сердца любого организма имеет много характерных нюансов. В процессе филогенеза, то есть эволюции живых организмов к более сложным, сердце птиц, животных и человека приобретает четыре камеры вместо двух камер у рыб и трех камер у земноводных. Такое сложное строение наилучшим образом приспособлено для разделения потоков артериальной и венозной крови. Кроме этого, анатомия сердца человека подразумевает множество мельчайших деталей, каждая из которых выполняет свои строго определенные функции.

Сердце как орган

Итак, сердце является не чем иным, как полым органом, состоящим из специфической мышечной ткани, которая и осуществляет моторную функцию. Сердце располагается в грудной клетке за грудиной, больше слева, а продольная ось его направлена кпереди, влево и вниз. Спереди сердце граничит с легкими, почти полностью прикрываясь ими, оставляя лишь незначительную часть, непосредственно прилегающую к грудной клетке изнутри. Границы этой части по другому называются абсолютной сердечной тупостью, а определить их можно с помощью простукивания грудной стенки (перкуссии).

У людей с нормальной конституцией сердце имеет полугоризонтальное положение в грудной полости, у лиц с астенической конституцией (худощавых и высоких) - почти вертикальное, а у гиперстеников (плотных, коренастых, с большой мышечной массой) - почти горизонтальное.

Задняя стенка сердца прилегает к пищеводу и к крупным магистральным сосудам (к грудному отделу аорты, к нижней полой вене). Нижняя часть сердца расположена на диафрагме.

внешнее строение сердца

Возрастные особенности

Сердце человека начинает формироваться на третьей неделе внутриутробного периода и продолжается весь период вынашивания беременности, проходя стадии от однокамерной полости к четырехкамерному сердцу.

развитие сердца во внутриутробном периоде

Формирование четырех камер (двух предсердий и двух желудочков) происходит уже в первые два месяца беременности. Мельчайшие структуры полностью формируются к родам. Именно в первые два месяца сердце эмбриона наиболее уязвимо для негативного влияния некоторых факторов на будущую маму.

Сердце плода участвует в кровотоке по его организму, но отличается кругами кровообращения - у плода пока не работает собственное дыхание легкими, а «дышит» он через плацентарную кровь. В сердце плода существуют некоторые отверстия, позволяющие «выключать» легочной кровоток из кровообращения до родов. Во время родов, сопровождающихся первым криком новорожденного, и, следовательно, в момент повышения внутригрудного давления и давления в сердце ребенка, эти отверстия закрываются. Но это происходит далеко не всегда, и у ребенка они могут остаться, например, открытое овальное окно (не следует путать с таким пороком, как дефект межпредсердной перегородки). Открытое окно пороком сердца не является, и впоследствии, по мере роста ребенка, зарастает.

гемодинамика в сердце до и после рождения

Сердце новорожденного ребенка имеет округлую форму, а размеры его составляют 3-4 см в длину и 3-3.5 см в ширину. В первый год жизни ребенка сердце значительно увеличивается в размерах, причем больше в длину, чем в ширину. Масса сердца новорожденного ребенка составляет околограмм.

По мере роста и развития малыша сердце также растет, иногда значительно опережая развитие самого организма согласно возрасту. К 15 годам масса сердца возрастает почти в десять раз, а объем его увеличивается более, чем в пять раз. Наиболее интенсивно сердце растет до пяти лет, а затем в период полового созревания.

У взрослого человека размеры сердца составляют околосм в длину, и 8-10 см в ширину. Многие справедливо полагают, что размеры сердца каждого человека соответствуют размеру его сжатого кулака. Масса сердца у женщин составляет около 200 грамм, а у мужчин - околограмм.

После 25 лет начинаются изменения в соединительной ткани сердца, которая образует сердечные клапаны. Эластичность их уже не такая, как в детстве и юношестве, а края могут стать неровными. По мере взросления, а затем и старения человека изменения происходят во всех структурах сердца, а также в сосудах, его питающих (в коронарных артериях). Эти изменения могут приводить к развитию многочисленных кардиологических заболеваний.

Анатомические и функциональные особенности сердца

Анатомически сердце представляет собой орган, разделенный с помощью перегородок и клапанов на четыре камеры. «Верхние» две называются предсердиями (atrium), а «нижние» две - желудочками (ventriculum). Между правым и левым предсердиями располагается межпредсердная перегородка, а между желудочками - межжелудочковая. В норме эти перегородки не имеют в себе отверстия. Если же отверстия имеются, это приводит к смешиванию артериальной и венозной крови, и, соответственно, к гипоксии многих органов и тканей. Такие отверстия называются дефектами перегородок и относятся к порокам сердца.

базовое строение камер сердца

Границами между верхними и нижними камерами являются атрио-вентрикулярные отверстия - левое, прикрытое створками митрального клапана, и правое, прикрытое створками трикуспидального клапана. Целостность перегородок и правильная работа клапанных створок предотвращают смешивание кровяных потоков в сердце, и способствуют четкому однонаправленному движению крови.

Предсердия и желудочки отличаются - предсердия имеют меньшие размеры, нежели желудочки, и меньшую толщину стенок. Так, стенка предсердий составляет порядка всего трех миллиметров, стенка правого желудочка - около 0.5 см, а левого - около 1.5 см.

У предсердий имеются небольшие выступы – ушки. Они обладают незначительной присасывающей функцией для лучшего нагнетания крови в полость предсердий. В правое предсердие возле его ушка впадает устье полой вены, а в левое – легочные вены в количестве четырех (реже пяти). От желудочков отходят легочная артерия (называемая чаще легочным стволом) справа и луковица аорты слева.

строение сердца и входящих в него сосудов

Изнутри верхние и нижние камеры сердца тоже отличаются и имеют свои особенности. Поверхность предсердий является более гладкой, чем желудочков. От клапанного кольца между предсердием и желудочком берут начало тонкие соединительнотканные клапаны - двустворчатый (митральный) слева и трехстворчатый (трикуспидальный) справа. Другим краем створки обращены внутрь желудочков. Но для того, чтобы они не свисали свободно, их как бы поддерживают тонкие сухожильные нити, называемые хордами. Они словно пружинки, растягиваются при смыкании створок клапанов и сжимаются при раскрытии створок. Хорды берут начало от сосочковых мышц из стенки желудочков - в составе трех в правом и двух в левом желудочке. Именно поэтому желудочковая полость имеет неровную и бугристую внутреннюю поверхность.

Функции предсердий и желудочков также различаются. В связи с тем, что предсердиям кровь необходимо проталкивать в желудочки, а не в более крупные и длинные сосуды, преодолевать сопротивление мышечной ткани им приходится меньшее, поэтому предсердия меньше по размеру и стенки их тоньше, нежели у желудочков. Желудочки проталкивают кровь в аорту (слева) и в легочную артерию (справа). Условно сердце разделяется на правую и левую половину. Правая половина служит для потока исключительно венозной крови, а левая – для артериальной. Схематично «правое сердце» обозначается синим цветом, а «левое сердце» - красным. В норме эти потоки никогда не смешиваются.

гемодинамика в сердце

Один сердечный цикл длится около 1 секунды и осуществляется следующим образом. В момент наполнения кровью предсердий стенки их расслабляются – происходит диастола предсердий. Открыты клапаны полых вен и легочных вен. Трикуспидальный и митральный клапаны закрыты. Затем предсердные стенки напрягаются и выталкивают кровь в желудочки, трикуспидальный и митральный клапаны открыты. В этот момент происходит систола (сокращение) предсердий и диастола (расслабление) желудочков. После принятия крови желудочками трикуспидальный и митральный клапаны закрываются, а клапаны аорты и легочной артерии открываются. Далее сокращаются уже желудочки (систола желудочков), а предсердия вновь наполняются кровью. Наступает общая диастола сердца.

Основная функция сердца сводится к насосной, то есть к проталкиванию определенного кровяного объема в аорту с такими давлением и скоростью, чтобы кровь была доставлена к самым отдаленным органам и к мельчайшим клеточкам организма. Причем в аорту проталкивается артериальная кровь с высоким содержанием кислорода и питательных веществ, поступающая в левую половину сердца из сосудов легких (притекает к сердцу по легочным венам).

Венозная кровь, с низким содержанием кислорода и других веществ, собирается от всех клеток и органов с систему полых вен, и притекает в правую половину сердца из верхней и нижней полых вен. Далее венозная кровь выталкивается из правого желудочка в легочную артерию, а затем в легочные сосуды с целью осуществления газообмена в альвеолах легких и с целью обогащения кислородом. В легких артериальная кровь собирается в легочные венулы и вены, и вновь притекает в левую половину сердца (в левое предсердие). И так регулярно сердце осуществляет перекачивание крови по организму с частотойударов в минуту. Данные процессы обозначаются понятием «кругов кровообращения». Их два – малый и большой:

  • Малый круг включает в себя поток венозной крови из правого предсердия через трикуспидальный клапан в правый желудочек – затем в легочную артерию - далее в артерии легких – обогащение крови кислородом в легочных альвеолах – поток артериальной крови в мельчайшие вены легких – в легочные вены – в левое предсердие.
  • Большой круг включает поток артериальной крови из левого предсердия посредством митрального клапана в левый желудочек – через аорту в артериальное русло всех органов – после газообмена в тканях и органах кровь становится венозной (с большим содержанием углекислого газа вместо кислорода) – далее в венозное русло органов – в систему полых вен - в правое предсердие.

Видео: анатомия сердца и сердечный цикл кратко

Морфологические особенности сердца

Для того, чтобы волокна сердечной мышцы сокращались синхронно, к ним необходимо подвести электрические сигналы, которые и возбуждают волокна. В этом заключается другая способность сердца - проводимость.

Проводимость и сократимость возможны за счет того, что сердце в автономном режиме генерирует в себе электричество. Данные функции (автоматизм и возбудимость) обеспечиваются особенными волокнами, которые являются составной частью проводящей системы. Последняя представлена электрически активными клетками синусового узла, атрио-вентрикулярного узла, пучком Гиса (с двумя ножками - правой и левой), а также волокнами Пуркинье. В том случае, когда у пациента поражение миокарда затрагивает эти волокна, развиваются нарушения сердечного ритма, по-другому называемые аритмиями.

В норме электрический импульс зарождается в клетках синусового узла, который располагается в зоне ушка правого предсердия. За короткий промежуток времени (около половины миллисекунды) импульс распространяется по миокарду предсердий, а далее попадает в клетки атрио-вентрикулярного соединения. Обычно сигналы передаются к АВ-узлу по трем основным трактам – пучкам Венкенбаха, Тореля и Бахмана. В клетках АВ-узла время передачи импульса удлиняется домиллисекунд, а затем импульсы попадают посредством правой и левой ножек (а также передней и задней ветвей левой ножки) пучка Гиса к волокнам Пуркинье, и в итоге, к рабочему миокарду. Частота передачи импульсов по всем проводящим путям равна частоте сердечных сокращений и составляетимпульсов в минуту.

Итак, миокард, или сердечная мышца является средней оболочкой в стенке сердца. Внутренняя и внешняя оболочки представляют собой соединительную ткань, и называются эндокардом и эпикардом. Последний слой входит в состав перикардиальной сумки, или сердечной «сорочки». Между внутренним листком перикарда и эпикардом образуется полость, заполненная очень незначительным количеством жидкости, для обеспечения лучшего скольжения листков перикарда в моменты сердечных сокращений. В норме объем жидкости составляет до 50 мл, превышение данного объема может свидетельствовать о перикардите.

строение сердечной стенки и оболочки

Кровоснабжение и иннервация сердца

Несмотря на то, что сердце является насосом по обеспечению всего организма кислородом и питательными веществами, само оно тоже нуждается в артериальной крови. В связи с этим вся стенка сердца имеет хорошо развитую артериальную сеть, которая представлена разветвлением коронарных (венечных) артерий. Устья правой и левой венечных артерий отходят от корня аорты и подразделяются на ветви, проникающие в толщу сердечной стенки. Если эти важнейшие артерии забиваются тромбами и атеросклеротическими бляшками, у пациента разовьется инфаркт, и орган уже не сможет выполнять свои функции в полном объеме.

расположение коронарных артерий, кровоснабжающих сердечную мышцу (миокард)

На то, с какой частотой и силой бьется сердце, оказывают влияние нервные волокна, отходящие от важнейших нервных проводников - блуждающего нерва и симпатического ствола. Первые волокна обладают способностью замедлять частоту ритма, последние – увеличивать частоту и силу сердцебиения, то есть действуют подобно адреналину.

В заключение необходимо отметить, что анатомия сердца может иметь какие-либо отклонения у отдельных пациентов, поэтому определить норму или патологию у человека способен только врач после проведения обследования, способного наиболее информативно визуализировать сердечно-сосудистую систему.

Сердечная мышца человека, ее особенности и функции

Сердце представляет собой полый орган. Его размер примерно с кулак человека. Сердечная мышца формирует стенки органа. В нем присутствует перегородка, разделяющая его на левую и правую половины. В каждой из них сеть желудочек и предсердие. Направление движения крови в органе контролируется посредством клапанов. Далее рассмотрим подробнее свойства сердечной мышцы.

Общие сведения

Сердечная мышца – миокард – составляет основную часть массы органа. Она состоит из трех типов ткани. В частности, выделяют: атипический миокард проводящей системы, волокна предсердия и желудочков. Размеренное и координированное сокращение сердечной мышцы обеспечивается проводящей системой.

Строение

Сердечная мышца отличается сетчатой структурой. Она формируется из волокон, переплетенных в сеть. Связи между волокнами устанавливаются за счет присутствия боковых перемычек. Таким образом, сеть представлена в виде узкопетлистого синцития. Между волокнами сердечной мышцы присутствует соединительная ткань. Она отличается рыхлой структурой. Кроме этого, волокна обвиты густой сетью капилляров.

Свойства сердечной мышцы

В структуре присутствуют вставочные диски, представленные в виде мембран, отделяющих клетки волокон друг от друга. Здесь следует отметить важные особенности сердечной мышцы. Отдельные кардиомиоциты, присутствующие в структуре в большом количестве, соединены друг с другом параллельно и последовательно. Клеточные мембраны сливаются так, что формируют щелевые контакты высокой проницаемости. Через них беспрепятственно диффундируют ионы. Таким образом, одна из особенностей миокарда состоит в наличии свободного перемещения ионов по внутриклеточной жидкости по ходу всего миокардиального волокна. Это обеспечивает беспрепятственное распределение потенциалов действия от одной клетки к другой сквозь вставочные диски. Из этого следует, что сердечная мышца – это функциональное объединение огромного количества клеток, имеющих тесную взаимосвязь друг с другом. Она настолько сильна, что при возбуждении только одной клетки провоцирует распространение потенциала на все остальные элементы.

Миокардиальные синцития

В сердце их два: предсердный и желудочковый. Все отделы сердца отделены друг от друга фиброзными перегородками с отверстиями, снабженными клапанами. Непосредственно через ткань стенок возбуждение от предсердия к желудочку перейти не может. Передача осуществляется посредством специального атриовентрикулярного пучка. Его диаметр – несколько миллиметров. Состоит пучок из волокон проводящей структуры органа. Присутствие в сердце двух синцитий способствует тому, что предсердия сокращаются раньше желудочков. Это, в свою очередь, имеет важнейшее значение для обеспечения эффективной насосной деятельности органа.

Болезни миокарда

Работа сердечной мышцы может нарушаться вследствие различных патологий. В зависимости от провоцирующего фактора, выделяют специфические и идиопатические кардиомиопатии. Болезни сердца могут быть также врожденными и приобретенными. Существует еще одна классификация, в соответствии с которой различают рестриктивную, дилатационную, конгестивную и гипертрофическую кардиомиопатии. Рассмотрим их вкратце.

Гипертрофическая кардиомиопатия

На сегодняшний день специалистами выявлены мутации генов, провоцирующие данную форму патологии. Для гипертрофической кардиомиопатии характерно утолщение миокарда и изменение его структуры. На фоне патологии мышечные волокна увеличиваются в размерах, «скручиваются», приобретая странные формы. Первые симптомы заболевания отмечаются в детском возрасте. Основными признаками гипертрофической кардиомиопатии считаются болезненность в груди и одышка. Также наблюдается неравномерность сердечного ритма, на ЭКГ обнаруживаются изменения в сердечной мышце.

Конгестивная форма

Это достаточно распространенный тип кардиомиопатии. Как правило, заболевание возникает у мужчин. Распознать патологию можно по признакам сердечной недостаточности и нарушениям в сердечном ритме. У некоторых пациентов отмечается кровохарканье. Патологию также сопровождает боль в районе сердца.

Дилатационная кардиомиопатия

Эта форма заболевания проявляется в виде резкого расширения во всех камерах сердца и сопровождается снижением сократительной способности левого желудочка. Как правило, дилатационная кардиомиопатия возникает в сочетании с гипертонической болезнью, ИБС, стенозом в аортальном отверстии.

Рестриктивная форма

Кардиомиопатия этого типа диагностируется крайне редко. Причиной патологии является воспалительный процесс в сердечной мышце и осложнения после вмешательства на клапанах. На фоне заболевания происходит перерождение миокарда и его оболочек в соединительную ткань, отмечается замедленное наполнение желудочков. У пациента отмечается одышка, быстрая утомляемость, пороки клапанов и сердечная недостаточность. Крайне опасной рестриктивная форма считается для детей.

Как укрепить сердечную мышцу?

Существуют различные способы это сделать. Мероприятия включают в себя коррекцию режима дня и питания, упражнения. В качестве профилактики после консультации с врачом можно начать принимать ряд препаратов. Кроме этого, есть и народные методы укрепления миокарда.

Физическая активность

Она должна быть умеренной. Физическая активность должна стать неотъемлемым элементом жизни любого человека. При этом нагрузка должна быть адекватной. Не стоит перегружать сердце и истощать организм. Оптимальным вариантом считаются спортивная ходьба, плавание, езда на велосипеде. Упражнения рекомендуется проводить на свежем воздухе.

Ходьба

Она превосходно подходит не только для укрепления сердца, но и для оздоровления всего организма. При ходьбе задействована практически вся мускулатура человека. При этом сердце дополнительно получает умеренную нагрузку. По возможности, особенно в молодом возрасте, стоит отказаться от лифта и преодолевать высоту пешком.

Образ жизни

Укрепление сердечной мышцы невозможно без корректировки режима дня. Для улучшения деятельности миокарда необходимо отказаться от курения, дестабилизирующего давление и провоцирующего сужение просвета в сосудах. Кардиологи также не рекомендуют увлекаться баней и сауной, поскольку пребывание в парной существенно увеличивает сердечные нагрузки. Необходимо также позаботиться и о нормальном сне. Спать следует ложиться вовремя и отдыхать достаточное количество часов.

Диета

Одним из важнейших мероприятий в вопросе укрепления миокарда считается рациональное питание. Следует ограничить количество соленой и жирной пищи. В продуктах должны присутствовать:

  • Магний (бобовые, арбузы, орехи, гречка).
  • Калий (какао, изюм, виноград, абрикосы, кабачки).
  • Витамины Р и С (клубника, черная смородина, перец (сладкий), яблоки, апельсины).
  • Йод (капуста, творог, свекла, морепродукты).

Негативное воздействие на деятельность миокарда оказывает холестерин в высоких концентрациях.

Психоэмоциональное состояние

Укрепление сердечной мышцы может осложняться различными неразрешенными проблемами личного либо рабочего характера. Они могут спровоцировать перепады давления и нарушения ритма. Следует по возможности избегать стрессовых ситуаций.

Препараты

Существует несколько средств, способствующих укреплению миокарда. К ним, в частности, относят такие препараты, как:

  • «Рибоксин». Его действие направлено на стабилизацию ритма, усиление питания мышцы и коронарных сосудов.
  • «Аспаркам». Этот препарат представляет собой магниево-калиевый комплекс. Благодаря приему средства нормализуется электролитный обмен, устраняются признаки аритмии.
  • Родиола розовая. Это средство улучшает сократительную функцию миокарда. При приеме данного препарата следует соблюдать осторожность, поскольку он обладает способностью к возбуждению нервной системы.

Сердечная мышца человека

Физиологические свойства сердечной мышцы

Кровь может выполнять свои многочисленные функции, только находясь в постоянном движении. Обеспечение движения крови является главной функцией сердца и сосудов, формирующих кровеносную систему. Сердечно-сосудистая система совместно с кровью участвует также в транспорте веществ, терморегуляции, реализации иммунных реакций и гуморальной регуляции функций организма. Движущая сила кровотока создастся за счет работы сердца, которое выполняет функцию насоса.

Способность сердца сокращаться в течение всей жизни без остановки обусловлена рядом специфических физических и физиологических свойств сердечной мышцы. Сердечная мышца уникальным образом сочетает в себе качества скелетной и гладкой мускулатуры. Так же как и скелетные мышцы, миокард способен интенсивно работать и быстро сокращаться. Так же как и гладкие мышцы, он практически неутомим и не зависит от волевого усилия человека.

Физические свойства

Растяжимость - способность увеличивать длину без нарушения структуры под влиянием растягивающей силы. Такой силой является кровь, наполняющая полости сердца во время диастолы. От степени растяжения мышечных волокон сердца в диастолу зависит сила их сокращения в систолу.

Эластичность - способность восстанавливать исходное положение после прекращения действия деформирующей силы. Эластичность сердечной мышцы является полной, т.е. она полностью восстанавливает исходные показатели.

Способность развивать силу в процессе сокращения мышцы.

Физиологические свойства

Сокращения сердца происходят вследствие периодически возникающих процессов возбуждения в сердечной мышце, которая обладает рядом физиологических свойств: автоматизмом, возбудимостью, проводимостью, сократимостью.

Способность сердца ритмически сокращаться под влиянием импульсов, возникающих в нем самом, носит название автоматизм.

В сердце различают сократительную мускулатуру, представленную поперечно-полосатой мышцей, и атипическую, или специальную ткань, в которой возникает и проводится возбуждение. Атипическая мышечная ткань содержит малое количество миофибрилл, много саркоплазмы и не способна к сокращению. Она представлена скоплениями в определенных участках миокарда, которые образуют проводящую систему сердца, состоящую из синоатриального узла, располагающегося на задней стенке правого предсердия у места впадения полых вен; атриовентрикулярного, или предсердно-желудочкового узла, находящегося в правом предсердии вблизи перегородки между предсердиями и желудочками; предсердно-желудочкового пучка (пучка Гиса), отходящего от атриовентрикулярного узла одним стволом. Пучок Гиса, пройдя через перегородку между предсердиями и желудочками, разветвляется на две ножки, идущие к правому и левому желудочкам. Заканчивается пучок Гиса в толще мышц волокнами Пуркинье.

Синоатриальныи узел является водителем ритма первого порядка. В нем возникают импульсы, которые определяют частоту сокращений сердца. Он генерирует импульсы со средней частотойимпульсов в 1 мин.

Атриовентрикулярный узел - водитель ритма второго порядка.

Пучок Гиса - водитель ритма третьего порядка.

Волокна Пуркинье - водители ритма четвертого порядка. Частота возбуждения, возникающая в клетках волокон Пуркинье, очень низкая.

В норме атриовентрикулярный узел и пучок Гиса являются только передатчиками возбуждений из ведущего узла к сердечной мышце.

Однако и они обладают автоматизмом, только в меньшей степени, и этот автоматизм проявляется лишь при патологии.

В области синоатриального узла обнаружено значительное число нервных клеток, нервных волокон и их окончаний, которые образуют здесь нервную сеть. К узлам атипической ткани подходят нервные волокна от блуждающих и симпатических нервов.

Возбудимость сердечной мышцы - способность клеток миокарда при действии раздражителя приходить в состояние возбуждения, при котором изменяются их свойства и возникает потенциал действия, а затем сокращение. Сердечная мышца менее возбудима, чем скелетная. Для возникновения возбуждения в ней необходим более сильный раздражитель, чем для скелетной. При этом величина реакции сердечной мышцы не зависит от силы наносимых раздражений (электрических, механических, химических и др.). Сердечная мышца максимально сокращается и на пороговое, и на более сильное по величине раздражение.

Уровень возбудимости сердечной мышцы в разные периоды сокращения миокарда меняется. Так, дополнительное раздражение сердечной мышцы в фазу ее сокращения (систолу) не вызывает нового сокращения даже при действии сверхпорогового раздражителя. В этот период сердечная мышца находится в фазе абсолютной рефрактерности. В конце систолы и начале диастолы возбудимость восстанавливается до исходного уровня - это фаза относительной рефрактерное/пи. За этой фазой следует фаза экзальтации, после которой возбудимость сердечной мышцы окончательно возвращается к исходному уровню. Таким образом, особенностью возбудимости сердечной мышцы является длительный период рефрактерности.

Проводимость сердца - способность сердечной мышцы проводить возбуждение, возникшее в каком-либо участке сердечной мышцы, к другим ее участкам. Возникнув в синоатриальном узле, возбуждение распространяется по проводящей системе на сократительный миокард. Распространение этого возбуждения обусловлено низким электрическим сопротивлением нексусов. Кроме того, проводимости способствуют специальные волокна.

Волны возбуждения проводятся по волокнам сердечной мышцы и атипической ткани сердца с неодинаковой скоростью. Возбуждение по волокнам мышц предсердий распространяется со скоростью 0,8-1 м/с, по волокнам мышц желудочков - 0,8-0,9 м/с, по атипической ткани сердца - 2-4 м/с. При прохождении возбуждения через атриовентрикулярный узел возбуждение задерживается на 0,02- 0,04 с - это атриовентрикулярная задержка, обеспечивающая координацию сокращения предсердий и желудочков.

Сократимость сердца - способность мышечных волокон укорачиваться или изменять свое напряжение. Она реагирует на раздражители нарастающей силы по закону «все или ничего». Сердечная мышца сокращается по типу одиночного сокращения, так как длительная фаза рефрактерности препятствует возникновению тетанических сокращений. В одиночном сокращении сердечной мышцы выделяют: латентный период, фазу укорочения ([[|систола]]), фазу расслабления (диастола). Благодаря способности сердечной мышцы сокращаться только по типу одиночного сокращения сердце выполняет функцию насоса.

Первыми сокращаются мышцы предсердий, затем слой мышц желудочков, обеспечивая тем самым движение крови из полостей желудочков в аорту и легочный ствол.

Кардиомиоциты изолированы друг от друга и контактируют в области вставочных дисков, где соприкасаются мембраны соседних кардиомиоциов.

Коннесксоны- в мембране соседних клеток образуются эти структуры за счет белков конексинов. Коннексон окружают 6 таких белков, внутри коннексона - канал, который позволяет проходит ионам, таким таким образом электрический ток распространяется от одной клетки к другой. “f область имеет сопротивление 1,4 ом на см2(низкое). Возбуждение охватывает кардиомиоциты одновременно. Они функционирую как функциональный сенсициы. Нексусы очень чувствительны к недостатку кислорода, к действию катехоламинов, к стрессовым ситуациям, к физической нагрузке. Это может вызывать нарушение проведения возбуждения в миокарде. В экспериментальных условиях нарушение плотных контактов моно получить при помещении кусочков миокарда в гипертонический раствор сахарозы. Для ритмической деятельности сердца важна проводящая система сердца - эта система состоит из комплекса мышечных клеток, образующих пучки и узлы и клетки проводящей системы отличаются от клеток рабочего миокарда - они бедны миофибриллами, богаты саркоплазмой и содержат высокое содержание гликогена. Эти особенности при световой микроскопии делают их более светлыми с малой поперечной исчерченностью и они были названы атипическими клетками.

В состав проводящей системы входят:

1. Синоатриальный узел(Кейт-Флека)(в парвом предсердии у места впадения верхней полой вены)

2. Атрии-вентрикулярный узел(Ашоф-Тавара)(лежит в правом предсердии на границе предсердие-желудочек - задняя стенка правого предсердия)

Эти два узла связаны внутрипредсердными трактами -

3. Предсердные тракты

Пердний с ветвью Бахмена к левому предсердию

Средний тракт(Венкебаха)

Задний тракт(Тореля)

4. Пучок Гиса(отходит от атриовентрикулярного узла. Проходит через фиброзную ткань и обеспечивает связь миокарда предсердия с миокардом желудочка. Проходит в межжелудочковую перегородку, где разделяется на правую и илевую ножку пучка Гиса)

5. Правая и левая ножки пучка Гиса(они идут вдоль межжелудочковой перегородки. Левая ножка имеет две ветви - переднюю и заднюю. Конечными разветвлениями будут являтся волокна Пуркинье)

6. Волокна Пуркинье

В проводящей системе сердца, которая образована видоизмененными типами мышечных клеток имеются три вида клеток - пейсмекерны(P), переходные, клетки Пуркинье.

1. P -клетки . Находятся в сино-артриальном узле, меньше в атриовентрикулярном ядре. Это самые мелкие клетки, в них мало т - фибрилл и митохондрий, т-сстема отстутствует, l. система развита слабо. Основной функцией этих клеток является генерация потенциала действия за счет врожденного свойства медленной диастолической деполяризации. В них происходит периодическое снижение мембранного потенциала, которое приводит их к самовозбуждению.

2. Переходные клетки осуществляют предачу возбуждения в области атривентрикуярного ядра. Они обнаруживаются между P клетками и клетками Пуркинье. Эти клетки вытянутой формы, у них отсутствует сарко-плазматический ретикулум. Эти клетки облают замедленной скоростью проведения.

3. Клетки Пуркинье широкие и короткие, в них больше миофибрилл, лучше развит саркоплазматический ретикулум, T система отсутствует.

Электрические свойства клеток миокарда. Клетки миокарда, как рабочего, так и проводящей системы обладают мембранным потенциалам покоя и снаружи мембрана кардиомиоцита заряжена «+», а внутри «-». Это обусловлено ионной ассиметрией - внутри клеток в 30 раз больше ионов калия, а снаружи в 20-25 раз больше ионов натрия. Это обеспечивается постоянной работой натриево-калиевым насосом. Измерение мембранного потенциала показывает, что клетки рабочего миокарда имеетпотенциал - 80-90 мВольт. В клетках проводящей системы - 50-70 мВольт. При возбуждении клеток рабочего миокарда возникает потенциал действия(5 фаз) - 0, 1, 2, 3, 4.

0. При возбуждении возникает процесс деполяризации кардиомиоцитов, что связано с открытием натриевых каналов и повышение проницаемости для ионов натрия, которые устремляются внутрь кардиомиоцитов. При снижении мембранного потенциала о 30-40 милиВольт происходить открытие медленных натриево-кальцевых каналов. Через них могут входить натрий и дополнительно кальций. Это обеспечивает процесс деполяризации и овершут(реверсия) 120 мВольт.

1. Начальная фаза реполяризации . Закрытие натриевых каналов и некоторое повышение проницаемости к ионам хлора.

2. Фаза Плато . Процесс деполяризации затормаживается. Связана с усилением выхода кальция внутрь. Он задерживает восстановление заряда на мембране. При возбуждении снижается калиевая проницаемость(в 5 раз). Калий не может выходить из кардиомиоцитов.

3. Когда кальцевые каналы закрываются происходит фаза быстрой реполяризации . За счет восстановления поляризации к ионам калия и мембранный потенциал возвращается к исходному уровню и наступает диастолический потенциал

4. Диастолический потенциал постоянно стабилен

В клетках проводящей системы есть отличительные особенности потенциала.

1. Сниженный мембранный потенциал в диастолический период(50-70мВ)

2. Четвертая фаза не является стабильной и отмечается постепенное снижение мембранного потенциала к пороговому критическому уровню деполяризации и в диастолу постепенно медленно продолжает снижаться достигая критического уровня деполяризации при котором произойдет самовозбуждение П-клеток. В P-клетках происходит усиление проникновения ионов натрия и снижение выхода ионов калия. Повышается проницаемость ионов кальция. Эти сдвиги в ионном составе приводят к тому, что мембранный потенциал в P-клетках снижается до порогового уровня и p-клетка самовозбуждается обеспечивая возникновение потенциала действия. Плохо выражена фаза Плато. Фаза ноль плавно переходи ТВ процесс реполяризации, который восстанавливает диастолический мембранный потенциал, а дальше цикл повторяется вновь и P-клетки переходят в состояние возбуждения. Наибольшой возбудимостью обладают клетки сино-атриального узла. Потенциал в нем особо низок и скорость диастолической деполяризации наиболее высок.. Это будет влиять на частоту возбуждения. P- клетки синусного узла генерируют частоту до 100 ударов в мин. Нервная система(симпатическая система) подавляют действие узла(70 ударов). Симпатическая система может повышать автоматию. Гуморальные факторы- адреналин, норадреналин. Физические факторы - механический фактор - растяжение, стимулируют автоматию, согревание, тоже увеличивает автоматию. Все это применяется в медицине. На этом основано мероприятие прямого и непрямого массажа сердца. Область атриовентрикулярного узла тоже обладает автоматией. Степень автоматии атриовентрикулярного узла выражена значительно меньше и как правило она в 2 раза меньше, чем в синусном узле - 35-40. В проводящей системе желудочков импульсы тоже могут возникать(20-30 в минуту). ПО ходу проводящей системы возникает постипенное снижение уровня автоматии, что получило название градиента автоматии. Синусный узел - центр автоматии первого порядка.

Станеус - ученый . Наложение лигатур на сердце лягушки(3х камерное). У правого предсердия имеется венозныц синус, где лежит аналог синусного узла человека. Станеус накладывал 1ую лигатуру между венозным синусом и предсердием. Когда лигатура затягивалась сердце прекращала свою работу. Вторая лигатура накладывалась Станеусом между предсердиями и желудочком. В этой зоне находится аналог атрии-вентрикулярного узла, но 2ая лигатура имеет задачу не отделения узла, а его механическое возбуждение. Ее накладывают постепенно, возбуждая атриовентрикулярный узел и при этом возникает сокраение сердца. Желудочки получают вновь сокращаться под действием атрии-вентрикулярного узла. С частотой в 2 раза меньше. Если наложить 3ю лигатуру , которая отделяет атривентрикулярный узел возникает остановка сердца. Все это дает нам возможность показать, что синусный узел - водитель ритма, атриовентрикулярный узел обладает меньшей автоматией. В проводящей системе существуе убывающий градиент автоматии.

Физиологические свойства сердечной мышцы.

Возбудимость, проводимость,сократимость

Под возбудимостью сердечной мышцы понимается ее свойство отвечать на действие раздражителей пороговой или над пороговой силы процессом возбуждения. Возбуждение миокарда можно получить на действие химических, механических, температурных раздражений. Эта способность отвечать на действие разных раздражителей используется при массаже сердца(механическое), введение адреналина, кардиостимуляторы. Особенностью реакции сердца на действие раздражителя, играет то что действует по принципу «Все или ничего». Сердце отвечает максимальным импульсом уже на пороговый раздражитель. Продолжительность сокращения миокарда в желудочкх составляет 0,3с. Это обусловлено длительным потенциалом действия, который тоже длится до 300мс. Возбудимость сердечной мышцы может падать до 0 - абсолютно рефрактерная фаза. Никакие раздражители не могут вызвать повторного возбуждения(0,25-0,27с). Сердечная мышца абсолютно невозбудима. В момент расслабления(диастолы)абсолютная рефрактерная переходит в относительную рефрактерную 0,03-0,05с. В этот момент можно получить повторное раздражение на над пороговые раздражители. Рефрактерный период сердечной мышцы длится и совпадает по времени столько, сколько длится сокращение. Вслед за относительной рефрактерностью имеется небольшой период повышенной возбудимости - возбудимость ставновится выше исходного уровня - супер нормальная возбудимость. В эту фазу сердце особо чувствительно к воздействию других раздражителей(смогут возникать др. раздражители или экстрасистолы- внеочередные систолы). Наличие длительного рефрактерного периода должно оградить сердце от повторных возбуждений. Сердце выполняет насосную функцию. Промежуток между нормальным и внеочередным сокращением укорачивается. Пауза может быть нормальной или удлиненной.Удлиненную паузу называют компенсаторной. Причина экстрасистолов - возникновение других очагов возбуждения - атриовентрикулярный узел, элементы желудочковой части проводящей системы, клетки рабочего миокарда, Это может быть связано с нарушением кровоснабжением, нарушением проведения в сердечной мышцей, но все дополнительные очаги - эктопические очаги возбуждения. В зависимости от локализации - разные экстрасистолы - синусные, предсредные, атриовентрикулярные. Экстрасистолы желудочка сопровождаются удлиненной компенсаторнйо фазой. 3 дополнительное раздражение - причина внеочередного сокращения. Вовремя экстрасистола сердце утрачивает возбудимость. К ним приходит очередной импульс из синусного узла. Пауза нужна для восстановления нормального ритма. Когда в сердце происходит сбой сердце пропускает одно нормальное сокращение и дальше возвращается к нормальному ритму.

Проводимость - способность проводить возбуждение. Скорость проведения возбуждения в разных отделах неодинакова. В миокарде предсердий - 1 м/c и время проведения возбуждения занимает 0,035 с

Скорость проведения возбуждения

Миокард 1 м/c 0,035

A-V узел 0,02 - 0-05 м в с. 0,04 с

Проведение система желудочков - 2-4,2 м в с. 0,32

В сумме от синусного узла до миокарда желудочка - 0,107 с

Миокард желудочка - 0,8-0,9 м в с

Нарушение проведения сердца приводит к развитию блокад - синусной, атривентрикулярной, пучка гиса и его ножек. Синусный узел может выключится.. Включится ли атривентрикулярный узел как водитель ритма? Синусные блокады встречаются редко. Больше в атриовентрикулярных узлах. Удлиение задержки(больше 0,21с) возбуждение доходит до желудочка, хоть и замедленно. Выпадение отдельных возбуждений, которые возникают в синусном узле НАПРИМЕР из 3 доходит только 2 - вторая степень блокады. 3я блокада - предсердия и желудочки работают несогласованно. Блокада ножек и пучка - блокада желудочков. Чаще встречаются блокады ножек пучка Гиса и соответственно желудочек запаздывает за другим.

Сократимость

Кардиомиоциты включают фибриллы, саркомеры. Есть продольные трубочки и Т трубочки наружной мембраны, котоыре входят внутрь на уровне мембраны я. Они широкие. Сократительная фугкция кардиомиоцитов связана с белками миозином и актином. На тонких актиновых белках - система тропонин и тропомиозин. Это не дает головкам миозин сцепляется с головками миозина. Снятие блокировки - ионами кальция. По т трубочкам открываются кальцевые каналы. Повышение кальция в саркоплазме снимает тормозной эффект актина и миозина. Мостики миозина перемещают тонике нити к центру. Миокард подчиняется в сократительной функции 2м законам - все или ничего. Сила сокращения зависит от исходной длины кардиомиоцитов - Франк и Старалинг. Если миоциты предварительно растянуты, то они отвечают большей силой сокращения. Растяжение зависит от наполнения кровью. Чем больше- тем сильней. Этот закон формулируют как - систола есть функция диастолы. Это важный приспособительный механизм. Это синхронизирует работу правого и левого желудочка.

К основным свойствам сердечной мышцы относятся: 1) автоматия, 2) возбудимость, 3) проводимость и 4) сократимость.

АВТОМАТИЯ

Способность к ритмическому сокращению без всяких видимых раздражений под влиянием импульсов, возникающих в самом органе, является характерной особенностью сердца. Это свойство называется автоматизмом. Так как импульсы появляются в мышечных волокнах, то говорят о миогенной автоматии.

Существование миогенной автоматии позволяет возбуждаться и сокращаться сердечной мышце при перерезке всех идущих к ней внешних нервов и даже при полном извлечении сердца из тела. При создании необходимых условий, способность к сокращению, без действия внешних раздражителей, сохраняется в течение нескольких часов и даже суток. Ритмические сокращения зарегистрированы у человеческого эмбриона на ранних стадиях развития (18-20 день).

Но способностью к автоматии в сердце обладают не все мышечные волокна, а только атипическая мышечная ткань.

Природа автоматии до сих пор до конца не выяснена. У высших позвоночных возникновение импульсов связано с функцией атипических мышечных клеток - миоцитов -пейсмекеров , заложенных в узлах сердца.

Атипическая ткань в сердце млекопитающих животных локализуется в областях, гомологичных венозному синусу и атриовентрикулярной области холоднокровных.

Первый узел проводящей системы расположен в месте впадения полых вен в правое предсердие. Имеет несколько названий: синуснопредсердный, синоатриальный, синусный, синусноаурикулярный, Кейс-Флека (Кис-Фляка, Кейт-Флака) . Он является главным центром автоматии сердца -пейсмекером (водителем ритма) первого порядка .

От данного узла возбуждение распространяется к рабочим клеткам миокарда, как диффузно, так и по специализированным пучкам или трактам (Торела, Венкебаха, Кента и т.д.).

В частности к левому предсердию возбуждение направляется по пучку Бахмана, а к предсердно-желудочковому узлу - по пучку Кис-Фляка.

Далее возбуждение достигает второго узла -предсердно-желудочкового (атриовентрикулярного, Ашоффа-Товара) . Он расположен в толще сердечной перегородки на границе предсердий и желудочков. Узел состоит из трех частей, обладающих собственной частотой возбуждения: 1 -верхней предсердной и 2-средней и 3 -нижней желудочковых. Этот узел является пейсмекером второго порядка . В норме возбуждение в данном узле никогда не генерируется, узел лишь проводит импульсы от синоатриального узла, причем в норме возбуждение проходит только в одном направлении. Ретроградное (обратное) проведение импульсов невозможно.

При прохождении возбуждения через предсердно-желудочковый узел импульсы задерживаются на 0,02-0,04 с. Это явление получило название атриовентрикулярной задержки . Ее функциональное значение состоит в том, что за время задержки успевает завершиться систола предсердий. За счет этого достигается координированная работа предсердий и желудочков.

В настоящее время предполагается, что причиной атриовентри­кулярной задержки может быть: истончение пучков Кис-Флака при подходе к атриовентрикулярному узлу. Существует также предположе­ние, что передача возбуждения на атриовентрикулярный узел осу­ществляется через химический синапс.

Третий уровень расположен в пучке Гиса и волокнах Пуркинье. Пучок Гиса берет начало от предсердно-желудочкового узла (длина 1-2 см) и образует две ножки, одна из которых идет к левому, дру­гая - к правому желудочку. Эти ножки ветвятся на более тонкие проводящие пути, которые в свою очередь заканчиваются волокнами Пуркинье под эндокардом. Считается, что между этими волокнами и типичной мускулатурой имеются так называемые переходные клетки. Они непосредственно и осуществляют контакт с рабочими клетками миокарда и обеспечивают одновременную передачу возбуждения с про­водящей системы сердца на рабочую мускулатуру.

Центры автоматии, расположенные в проводящей системе желу­дочков, носят название пейсмекеров третьего порядка . Они также, как и атриовентрикулярный узел, никогда в норме не вступают в работу, а предназначены лишь для проведения импульсов, идущих от синоатриального узла. Таким образом, возбуждение по ножкам пучка Гиса направляется к верхушке сердца и оттуда по разветвлениям но­жек и волокнам Пуркинье возвращается к основанию сердца. В ре­зультате этого сокращение сердца в целом определяется в опреде­ленной последовательности: сначала сокращаются предсердия, затем верхушки желудочков и наконец их основания.

Итак, нижележащие водители ритма находятся в соподчиненном положении и в сердце существует так называемый градиент автома­тии , который был открыт в опытах Станиуса (описаны в практических руководствах по физиологии), а сформулирован Гаскеллом.

Градиент автоматии выражается в убывающей способности к ав­томатии различных структур проводящей системы по мере их удаления от синусно-предсердного узла. В синусно-предсердном узле число разрядов составляет в среднем 60-80 имп/мин у взрослого человека, в предсердно-желудочковом - 40-50, в клетках пучка Гиса - 30-40, в волокнах Пуркинье - 20-30 имп/мин.

Таким образом, в сердце существует определенная иерархия центров автоматии, что позволило В. Гаскеллу сформулировать прави­ло, согласно которому степень автоматии отдела тем выше, чем он ближе расположен к синусно-предсердному узлу.

В том случае, когда в пейсмекере первого порядка не возника­ет возбуждение или блокируется его передача, роль водителя ритма берет на себя пейсмекер второго порядка через 30-40 сек (асисто­лия) и желудочки начинают сокращаться в ритме атриовентрикулярно­го узла. При невозможности передачи возбуждения к желудочкам они начинают сокращаться в ритме пейсмекеров третьего порядка.

В норме частоту активности миокарда всего сердца в целом оп­ределяет синусно-предсердный узел и подчиняет себе все нижележа­щие центры автоматии, навязывая им свой ритм. Явление, при кото­ром структуры с замедленным ритмом генерации потенциалов усваивают более частый ритм других участков проводящей системы, называют усвоением ритма. В случае, когда синоатриальный узел повреждается и при этом человеку оказывают своевременную квалифицированную медицинскую помощь (больному вживляют стимулятор, задающий самостоятельно ритм для работы сердца) можно сохранить жизнь пациенту.

При поперечной блокаде предсердия и желудочки сокращаются каждый в своем ритме. Нескоординированная работа водителей ритма ухудшает основную функцию сердца - нагнетательную. Повреждение водителей ритма ведет к полной остановке сердца.