Аэробное и анаэробное дыхание растений. Аэробное дыхание, цикл Кребса

  • 21.04.2024

Введение

1. Аэробное дыхание

1.1 Окислительное фосфолирование

2. Анаэробное дыхание

2.1 Типы анаэробного дыхания

4.Список литературы

Введение

Дыхание присуще всем живым организмам. Оно представляет собой окислительный распад органических веществ, синтезированных в процессе фотосинтеза, протекающих с потреблением кислорода и выделением диоксида углерода. А.С. Фаминцын рассматривал фотосинтез и дыхание как две последовательные фазы питания растений: фотосинтез готовит углеводы, дыхание перерабатывает их в структурную биомассу растения, образуя в процессе ступенчатого окисления реакционноспособные вещества и освобождая энергию, необходимую для их превращения и процессов жизнедеятельности в целом. Суммарное уравнение дыхания имеет вид:

CHO + 6O → 6CO + 6HO + 2875кДж.

Из этого уравнения становится ясно, почему именно скорость газообмена используют для оценки интенсивности дыхания. Оно было предложено в 1912 г. В. И. Палладиным, который считал, что дыхание состоит из двух фаз - анаэробной и аэробной. На анаэробном этапе дыхания, идущем в отсутствие кислорода, глюкоза окисляется за счет отнятия водорода (дегидрирования), который, по мнению ученого, передается на дыхательный фермент. Последний при этом восстанавливается. На аэробном этапе происходит регенерация дыхательного фермента в окислительную форму. В. И. Палладин впервые показал, что окисление сахара идет за счет непосредственного окисления его кислородом воздуха, поскольку кислород не встречается с углеродом дыхательного субстрата, а связано с его дегидрированием.

Существенный вклад в изучение сути окислительных процессов и химизма процесса дыхания внесли как отечественные (И.П. Бородин, А.Н.Бах, С.П. Костычев, В.И. Палладин), так и зарубежные (А.Л. Лавуазье, Г. Виланд, Г. Кребс) исследователи.

Жизнь любого организма неразрывно связана с непрерывным использованием свободной энергии, генерируемой при дыхании. Неудивительно, что изучению роли дыхания в жизни растения в последнее время отводят центральное место в физиологии растений.

1. Аэробное дыхание

Аэробное дыхание - это окислительный процесс, в ходе которого расходуется кислород. При дыхании субстрат без остатка расщепляется до бедных энергией неорганических веществ с высоким выходом энергии. Важнейшими субстратами для дыхания служат углеводы. Кроме того, при дыхании могут расходоваться жиры и белки.

Аэробное дыхание включает два основных этапа:

- бескислородный, в процессе, которого происходит постепенное расщепление субстрата с высвобождением атомов водорода и связыванием с коферментами (переносчиками типа НАД и ФАД);

- кислородный, в ходе которого происходит дальнейшее отщепление атомов водорода от производных дыхательного субстрата и постепенное окисление атомов водорода в результате переноса их электронов на кислород.

На первом этапе вначале высокомолекулярные органические вещества (полисахариды, липиды, белки, нуклеиновые кислоты и др.) под действием ферментов расщепляются на более простые соединения (глюкозу, высшие карбоновые кислоты, глицерол, аминокислоты, нуклеотиды и т.п.) Этот процесс происходит в цитоплазме клеток и сопровождается выделением небольшого количества энергии, которая рассеивается в виде тепла. Далее происходит ферментативное расщепление простых органических соединений.

Примером такого процесса является гликолиз - многоступенчатое бескислородное расщепление глюкозы. В реакциях гликолиза шестиуглеродная молекула глюкозы (С) расщепляется на две трехуглеродные молекулы пировиноградной кислоты (С). При этом образуется две молекулы АТФ, и выделяются атомы водорода. Последние присоединяются к переносчику НАД (никотинамидадениндинклеотид), который переходит в свою восстановительную форму НАД ∙ Н + Н. НАД кофермент, близкий по своей структуре к НАДФ. Оба они представляют собой производные никотиновой кислоты - одного из витаминов группы В. Молекулы обоих коферментов электроположительны (у них отсутствует один электрон) и могут играть роль переносчика как электронов, так и атомов водорода. Когда акцептируется пара атомов водорода, один из атомов диссоциирует на протон и электрон:

а второй присоединяется к НАД или НАДФ целиком:

НАД+ Н + [Н+ е] → НАД ∙ Н + Н.

Свободный протон позднее используется для обратного окисления кофермента. Суммарно реакция гликолиза имеет вид

CHO +2АДФ + 2НРО + 2 НАД→

2СНО + 2АТФ + 2 НАД ∙ Н + Н+ 2 HO

Продукт гликолиза - пировиноградная кислота (СНО) - заключает в себе значительную часть энергии, и дальнейшее ее высвобождение осуществляется в митохондриях. Здесь происходит полное окисление пировиноградной кислоты до COи HO. Этот процесс можно разделить на три основные стадии:

  1. окислительное декарбоксилирование пировиноградной кислоты;
  2. цикл трикарбоновых кислот (цикл Кребса);
  3. заключительная стадия окисления - электронтранспортная цепь.

На первой стадии пировиноградная кислота взаимодействует с веществом, которое называют коферментом А, в результате чего образуется ацетилкофермент а с высокоэнергетической связью. При этом от молекулы пировиноградной кислоты отщепляется молекула CO(первая) и атомы водорода, которые запасаются в форме НАД ∙ Н + Н.

Вторая стадия - цикл Кребса (рис. 1)

В цикл Кребса вступает ацетил-КоА, образованный на предыдущей стадии. Ацетил-КоА взаимодействует со щавелево-уксусной кислотой, в результате образуется шестиуглеродная лимонная кислота. Для этой реакции требуется энергия; ее поставляет высокоэнергетическая связь ацетил-КоА. В конце цикла щавелево-лимонная кислота регенерируется в прежнем виде. Теперь она способна вступить в реакцию с новой молекулой ацетил-КоА, и цикл повторяется. Суммарно реакция цикла может быть выражена следующим уравнением:

ацетил-КоА + 3HO + 3НАД+ ФАД + АДФ + НРО→

КоА + 2CO+ 3НАД ∙ Н + Н+ФАД ∙ H+ АТФ.

Таким образом, в результате распада одной молекулы пировиноградной кислоты в аэробной фазе (декарбоксилирование ПВК и цикла Кребса) выделяется 3CO, 4 НАД ∙ Н + Н, ФАД ∙ H. Суммарно реакцию гликолиза, окислительного декарбоксилирования и цикла Кребса можно записать в следующем виде:

CHO + 6 HO + 10 НАД + 2ФАД →

6CO+ 4АТФ + 10 НАД ∙ Н + Н+ 2ФАД ∙ H.

Третья стадия - электротранспортная цепь.

Пары водородных атомов, отщепляемые от промежуточных продуктов в реакциях дегидрирования при гликолизе и в цикле Кребса, в конце концов, окисляются молекулярным кислородом до HO с одновременным фосфолированием АДФ в АТФ. Происходит это тогда, когда водород, отделившийся от НАД ∙ Hи ФАД ∙ H, передается по цепи переносчиков, встроенных во внутреннюю мембрану митохондрий. Пары атомов водорода 2Н можно рассматривать как 2 Н + 2е. Движущей силой транспорта атомов водорода в дыхательной цепи является разность потенциалов.

С помощью переносчиков ионы водорода Нпереносятся с внутренней стороны мембраны на ее внешнюю сторону, иначе говоря, из матрикса митохондрии в межмембранное пространство (рис. 2).

При переносе пары электронов от над на кислород они пересекают мембрану три раза, и этот процесс сопровождается выделением на внешнюю сторону мембраны шести протонов. На заключительном этапе протоны переносятся на внутреннюю сторону мембраны и акцептируются кислородом:

½ O + 2е → O.

В результате такого переноса ионов Нна внешнюю сторону мембраны митохондрий в перимитохондриальном пространстве создается концентрация их, т.е. возникает электрохимический градиент протонов.

Когда протонный градиент достигает определенной величины, ионы водорода из Н-резервуара движутся по специальным каналам в мембране, и их запас энергии используется для синтеза АТФ. В матриксе они соединяются с заряженными частичками О, и образуется вода: 2Н+ О²ˉ → HO.

1.1 Окислительное фосфолирование

Процесс образования АТФ в результате переноса ионов Нчерез мембрану митохондрии получил название окислительного фосфолирования. Он осуществляется при участии фермента АТФ-синтетазы. Молекулы АТФ-синтетазы располагаются в виде сферических гранул на внутренней стороне внутренней мембраны митохондрий.

В результате расщепления двух молекул пировиноградной кислоты и переноса ионов водорода через мембрану по специальным каналам синтезируется в целом 36 молекул АТФ (2 молекулы в цикле Кребса и 34 молекулы в результате переноса ионов Н через мембрану).

Суммарное уравнение аэробного дыхания можно выразить следующим образом:

CHO + O+ 6HO + 38АДФ + 38НРО→

6CO+ 12HO + 38АТФ

Совершенно очевидно, что аэробное дыхание прекратится в отсутствии кислорода, поскольку именно кислород служит конечным акцептором водорода. Если клетки не получают достаточного количества кислорода, все переносчики водорода вскоре полностью насытятся и не смогут передавать его дальше. В результате основной источник энергии дл образования АТФ окажется блокированным.

аэробное дыхание окисление фотосинтез

2. Анаэробное дыхание

Анаэробное дыхание. Некоторые микроорганизмы способны использовать для окисления органических или неорганических веществ не молекулярный кислород, а другие окисленные соединения, например, соли азотной, серной и угольной кислот, превращающиеся при этом в более восстановленные соединения. Процессы идут в анаэробных условиях, и их называют анаэробным дыханием:

2HNO + 12Н→ N + 6HO + 2Н

HSO + 8Н→ HS + 4HO

У микроорганизмов, осуществляющих такое дыхание, конечным акцептором электронов будет не кислород а неорганическое соединения - нитриты, сульфаты и карбонаты. Таким образом, различия между аэробным и анаэробным дыханием заключается в природе конечного акцептора электронов.

2.1 Типы анаэробного дыхания

Основные типы анаэробного дыхания приведены в таблице 1. есть также данные об использовании бактериями в качестве акцепторов электронов Mn, хроматов, хинонов и др.

Таблица 1 Типы анаэробного дыхания у прокариот (по: М.В Гусев, Л.А. Минеева 1992, с изменениями)

Энергетический процесс

Конечный акцептор электронов

Продукты восстановления

Нитратное дыхание и нитрификация

Сульфатное и серное дыхание

“Железное ” дыхание

Карбонатное дыхание

СН, ацетат

Фумаратное дыхание

Сукцинат

Свойство организмов переносить электроны на нитраты, сульфаты и карбонаты обеспечивает в достаточной степени полное окисление органического или неорганического вещества без использования молекулярного кислорода и обуславливает возможность получения большого количества энергии, чем при брожении. При анаэробном дыхании выход энергии только на 10% ниже. Чем при аэробном. Организмы, для которых характерно анаэробное дыхание, имеют набор ферментов электронтранспортной цепи. Но цитохромоксилаза в них заменяется нитратредуктазой (при использовании в качестве акцептора электронов нитрата) или аденилсульфатредуктазой (при использовании сульфата) или другими ферментами.

Организмы, способные осуществлять анаэробное дыхание за счет нитратов, - факультативные анаэробы. Организмы, использующие сульфаты в анаэробном дыхании, относятся к анаэробам.

Вывод

Органические вещества из не органических зеленое растение образует только на свету. Эти вещества используются растением только для питания. Но растения не только питаются. Они дышат, как все живые существа. Дыхание происходит непрерывно днем о ночью. Дышат все органы растения. Растения дышат кислородом, а выделяют углекислый газ, как животные и человек.

Дыхание растений может происходить, как в темноте, так и на свету. Значит, на свету в растении протекают два противоположных процесса. Один процесс - фотосинтез, другой - дыхание. Во время фотосинтеза создаются органические вещества из неорганических и поглощается энергия солнечного света. Во время дыхания в растении расходуются органические вещества. А энергия, необходима для жизнедеятельности, освобождается. На свету в процессе фотосинтеза растения поглощают углекислый газ и выделяют кислород. Вместе с углекислым газом растения на свету поглощают из окружающего воздуха и кислород, необходимый растениям для дыхания, но в гораздо меньших количествах, чем выделяются при образовании сахара. Углекислого газа при фотосинтезе растения поглощают гораздо больше, чем выделяют его придыхании. Декоративные растения в комнате при хорошем освещении выделяют днем значительно больше кислорода, чем поглощают его в темноте ночью.

Дыхание во всех живых органов растения происходит непрерывно. Когда прекращается дыхание, растение, так же как и животное погибает.

Список литературы

1. Физиология и биохимия сельскохозяйственных растений Ф50/Н.Н. Третьяков, Е.И. Кошкин, Н.М. Макрушин и др.; под. ред. Н.Н. Третьякова. - М.; Колос, 2000 - 640 с.

2. Биология в экзаменационных вопросах и ответах Л44/ Лемеза Н.А., Камлюк Л.В.; 7-е изд. - М.: Айрис-пресс, 2003. - 512 с.

3. Ботаника: Учеб. Для 5-6 кл. сред. Шк.-19-е изд./Перераб. А.Н. Сладковым. - М.: Просвещение, 1987. - 256 с.

Введение

1. Аэробное дыхание

1.1 Окислительное фосфолирование

2. Анаэробное дыхание

2.1 Типы анаэробного дыхания

4.Список литературы


Введение

Дыхание присуще всем живым организмам. Оно представляет собой окислительный распад органических веществ, синтезированных в процессе фотосинтеза, протекающих с потреблением кислорода и выделением диоксида углерода. А.С. Фаминцын рассматривал фотосинтез и дыхание как две последовательные фазы питания растений: фотосинтез готовит углеводы, дыхание перерабатывает их в структурную биомассу растения, образуя в процессе ступенчатого окисления реакционноспособные вещества и освобождая энергию, необходимую для их превращения и процессов жизнедеятельности в целом. Суммарное уравнение дыхания имеет вид:

C H O + 6O → 6CO + 6H O + 2875кДж.

Из этого уравнения становится ясно, почему именно скорость газообмена используют для оценки интенсивности дыхания. Оно было предложено в 1912 г. В. И. Палладиным, который считал, что дыхание состоит из двух фаз – анаэробной и аэробной. На анаэробном этапе дыхания, идущем в отсутствие кислорода, глюкоза окисляется за счет отнятия водорода (дегидрирования), который, по мнению ученого, передается на дыхательный фермент. Последний при этом восстанавливается. На аэробном этапе происходит регенерация дыхательного фермента в окислительную форму. В. И. Палладин впервые показал, что окисление сахара идет за счет непосредственного окисления его кислородом воздуха, поскольку кислород не встречается с углеродом дыхательного субстрата, а связано с его дегидрированием.

Существенный вклад в изучение сути окислительных процессов и химизма процесса дыхания внесли как отечественные (И.П. Бородин, А.Н.Бах, С.П. Костычев, В.И. Палладин), так и зарубежные (А.Л. Лавуазье, Г. Виланд, Г. Кребс) исследователи.

Жизнь любого организма неразрывно связана с непрерывным использованием свободной энергии, генерируемой при дыхании. Неудивительно, что изучению роли дыхания в жизни растения в последнее время отводят центральное место в физиологии растений.


1. Аэробное дыхание

Аэробное дыхание это окислительный процесс, в ходе которого расходуется кислород. При дыхании субстрат без остатка расщепляется до бедных энергией неорганических веществ с высоким выходом энергии. Важнейшими субстратами для дыхания служат углеводы. Кроме того, при дыхании могут расходоваться жиры и белки.

Аэробное дыхание включает два основных этапа:

- бескислородный, в процессе, которого происходит постепенное расщепление субстрата с высвобождением атомов водорода и связыванием с коферментами (переносчиками типа НАД и ФАД);

- кислородный, в ходе которого происходит дальнейшее отщепление атомов водорода от производных дыхательного субстрата и постепенное окисление атомов водорода в результате переноса их электронов на кислород.

На первом этапе вначале высокомолекулярные органические вещества (полисахариды, липиды, белки, нуклеиновые кислоты и др.) под действием ферментов расщепляются на более простые соединения (глюкозу, высшие карбоновые кислоты, глицерол, аминокислоты, нуклеотиды и т.п.) Этот процесс происходит в цитоплазме клеток и сопровождается выделением небольшого количества энергии, которая рассеивается в виде тепла. Далее происходит ферментативное расщепление простых органических соединений.

Примером такого процесса является гликолиз – многоступенчатое бескислородное расщепление глюкозы. В реакциях гликолиза шестиуглеродная молекула глюкозы (С) расщепляется на две трехуглеродные молекулы пировиноградной кислоты (С). При этом образуется две молекулы АТФ, и выделяются атомы водорода. Последние присоединяются к переносчику НАД (никотинамидадениндинклеотид), который переходит в свою восстановительную форму НАД ∙ Н + Н . НАД кофермент, близкий по своей структуре к НАДФ. Оба они представляют собой производные никотиновой кислоты – одного из витаминов группы В. Молекулы обоих коферментов электроположительны (у них отсутствует один электрон) и могут играть роль переносчика как электронов, так и атомов водорода. Когда акцептируется пара атомов водорода, один из атомов диссоциирует на протон и электрон:

Н → Н + е ,

а второй присоединяется к НАД или НАДФ целиком:

НАД + Н + [Н + е ] → НАД ∙ Н + Н.

Свободный протон позднее используется для обратного окисления кофермента. Суммарно реакция гликолиза имеет вид

C H O +2АДФ + 2Н РО + 2 НАД →

2С Н О + 2АТФ + 2 НАД ∙ Н + Н + 2 HO

Продукт гликолиза – пировиноградная кислота (С Н О) – заключает в себе значительную часть энергии, и дальнейшее ее высвобождение осуществляется в митохондриях. Здесь происходит полное окисление пировиноградной кислоты до CO и H O. Этот процесс можно разделить на три основные стадии:

1) окислительное декарбоксилирование пировиноградной кислоты;

2) цикл трикарбоновых кислот (цикл Кребса);

3) заключительная стадия окисления – электронтранспортная цепь.

На первой стадии пировиноградная кислота взаимодействует с веществом, которое называют коферментом А, в результате чего образуется ацетилкофермент а с высокоэнергетической связью. При этом от молекулы пировиноградной кислоты отщепляется молекула CO (первая) и атомы водорода, которые запасаются в форме НАД ∙ Н + Н .

Вторая стадия – цикл Кребса (рис. 1)

В цикл Кребса вступает ацетил–КоА, образованный на предыдущей стадии. Ацетил–КоА взаимодействует со щавелево-уксусной кислотой, в результате образуется шестиуглеродная лимонная кислота. Для этой реакции требуется энергия; ее поставляет высокоэнергетическая связь ацетил–КоА. В конце цикла щавелево-лимонная кислота регенерируется в прежнем виде. Теперь она способна вступить в реакцию с новой молекулой ацетил–КоА, и цикл повторяется. Суммарно реакция цикла может быть выражена следующим уравнением:

ацетил-КоА + 3H O + 3НАД + ФАД + АДФ + Н РО →

КоА + 2CO + 3НАД ∙ Н + Н +ФАД ∙ H + АТФ.

Таким образом, в результате распада одной молекулы пировиноградной кислоты в аэробной фазе (декарбоксилирование ПВК и цикла Кребса) выделяется 3CO , 4 НАД ∙ Н + Н , ФАД ∙ H . Суммарно реакцию гликолиза, окислительного декарбоксилирования и цикла Кребса можно записать в следующем виде:

C H O + 6 H O + 10 НАД + 2ФАД →

6CO + 4АТФ + 10 НАД ∙ Н + Н + 2ФАД ∙ H .

Третья стадия – электротранспортная цепь.

Пары водородных атомов, отщепляемые от промежуточных продуктов в реакциях дегидрирования при гликолизе и в цикле Кребса, в конце концов, окисляются молекулярным кислородом до H O с одновременным фосфолированием АДФ в АТФ. Происходит это тогда, когда водород, отделившийся от НАД ∙ H и ФАД ∙ H , передается по цепи переносчиков, встроенных во внутреннюю мембрану митохондрий. Пары атомов водорода 2Н можно рассматривать как 2 Н + 2е . Движущей силой транспорта атомов водорода в дыхательной цепи является разность потенциалов.

С помощью переносчиков ионы водорода Н переносятся с внутренней стороны мембраны на ее внешнюю сторону, иначе говоря, из матрикса митохондрии в межмембранное пространство (рис. 2).


При переносе пары электронов от над на кислород они пересекают мембрану три раза, и этот процесс сопровождается выделением на внешнюю сторону мембраны шести протонов. На заключительном этапе протоны переносятся на внутреннюю сторону мембраны и акцептируются кислородом:

½ O + 2е → O .

В результате такого переноса ионов Н на внешнюю сторону мембраны митохондрий в перимитохондриальном пространстве создается концентрация их, т.е. возникает электрохимический градиент протонов.

Когда протонный градиент достигает определенной величины, ионы водорода из Н -резервуара движутся по специальным каналам в мембране, и их запас энергии используется для синтеза АТФ. В матриксе они соединяются с заряженными частичками О , и образуется вода: 2Н + О²ˉ → H O.

1.1 Окислительное фосфолирование

Процесс образования АТФ в результате переноса ионов Н через мембрану митохондрии получил название окислительного фосфолирования. Он осуществляется при участии фермента АТФ-синтетазы. Молекулы АТФ-синтетазы располагаются в виде сферических гранул на внутренней стороне внутренней мембраны митохондрий.

В результате расщепления двух молекул пировиноградной кислоты и переноса ионов водорода через мембрану по специальным каналам синтезируется в целом 36 молекул АТФ (2 молекулы в цикле Кребса и 34 молекулы в результате переноса ионов Н через мембрану).

Суммарное уравнение аэробного дыхания можно выразить следующим образом:

C H O + O + 6H O + 38АДФ + 38Н РО→

6CO + 12H O + 38АТФ

Совершенно очевидно, что аэробное дыхание прекратится в отсутствии кислорода, поскольку именно кислород служит конечным акцептором водорода. Если клетки не получают достаточного количества кислорода, все переносчики водорода вскоре полностью насытятся и не смогут передавать его дальше. В результате основной источник энергии дл образования АТФ окажется блокированным.

аэробное дыхание окисление фотосинтез


2. Анаэробное дыхание

Анаэробное дыхание. Некоторые микроорганизмы способны использовать для окисления органических или неорганических веществ не молекулярный кислород, а другие окисленные соединения, например, соли азотной, серной и угольной кислот, превращающиеся при этом в более восстановленные соединения. Процессы идут в анаэробных условиях, и их называют анаэробным дыханием:

2HNO + 12Н → N + 6H O + 2Н

H SO + 8Н → H S + 4HO

У микроорганизмов, осуществляющих такое дыхание, конечным акцептором электронов будет не кислород а неорганическое соединения – нитриты, сульфаты и карбонаты. Таким образом, различия между аэробным и анаэробным дыханием заключается в природе конечного акцептора электронов.

2.1 Типы анаэробного дыхания

Основные типы анаэробного дыхания приведены в таблице 1. есть также данные об использовании бактериями в качестве акцепторов электронов Mn , хроматов, хинонов и др.

Таблица 1 Типы анаэробного дыхания у прокариот (по: М.В Гусев, Л.А. Минеева 1992, с изменениями)

Энергетический процесс

Конечный акцептор электронов

Продукты восстановления

Нитратное дыхание и нитрификация

Сульфатное и серное дыхание

“Железное ” дыхание

Карбонатное дыхание

СН , ацетат

Фумаратное дыхание

Сукцинат

Свойство организмов переносить электроны на нитраты, сульфаты и карбонаты обеспечивает в достаточной степени полное окисление органического или неорганического вещества без использования молекулярного кислорода и обуславливает возможность получения большого количества энергии, чем при брожении. При анаэробном дыхании выход энергии только на 10% ниже. Чем при аэробном. Организмы, для которых характерно анаэробное дыхание, имеют набор ферментов электронтранспортной цепи. Но цитохромоксилаза в них заменяется нитратредуктазой (при использовании в качестве акцептора электронов нитрата) или аденилсульфатредуктазой (при использовании сульфата) или другими ферментами.

Организмы, способные осуществлять анаэробное дыхание за счет нитратов, - факультативные анаэробы. Организмы, использующие сульфаты в анаэробном дыхании, относятся к анаэробам.


Вывод

Органические вещества из не органических зеленое растение образует только на свету. Эти вещества используются растением только для питания. Но растения не только питаются. Они дышат, как все живые существа. Дыхание происходит непрерывно днем о ночью. Дышат все органы растения. Растения дышат кислородом, а выделяют углекислый газ, как животные и человек.

Дыхание растений может происходить, как в темноте, так и на свету. Значит, на свету в растении протекают два противоположных процесса. Один процесс - фотосинтез, другой – дыхание. Во время фотосинтеза создаются органические вещества из неорганических и поглощается энергия солнечного света. Во время дыхания в растении расходуются органические вещества. А энергия, необходима для жизнедеятельности, освобождается. На свету в процессе фотосинтеза растения поглощают углекислый газ и выделяют кислород. Вместе с углекислым газом растения на свету поглощают из окружающего воздуха и кислород, необходимый растениям для дыхания, но в гораздо меньших количествах, чем выделяются при образовании сахара. Углекислого газа при фотосинтезе растения поглощают гораздо больше, чем выделяют его придыхании. Декоративные растения в комнате при хорошем освещении выделяют днем значительно больше кислорода, чем поглощают его в темноте ночью.

Дыхание во всех живых органов растения происходит непрерывно. Когда прекращается дыхание, растение, так же как и животное погибает.


Список литературы

1. Физиология и биохимия сельскохозяйственных растений Ф50/Н.Н. Третьяков, Е.И. Кошкин, Н.М. Макрушин и др.; под. ред. Н.Н. Третьякова. – М.; Колос, 2000 – 640 с.

2. Биология в экзаменационных вопросах и ответах Л44/ Лемеза Н.А., Камлюк Л.В.; 7-е изд. – М.: Айрис-пресс, 2003. – 512 с.

Введение

1. Аэробное дыхание

1.1 Окислительное фосфолирование

2. Анаэробное дыхание

2.1 Типы анаэробного дыхания

4.Список литературы


Введение

Дыхание присуще всем живым организмам. Оно представляет собой окислительный распад органических веществ, синтезированных в процессе фотосинтеза, протекающих с потреблением кислорода и выделением диоксида углерода. А.С. Фаминцын рассматривал фотосинтез и дыхание как две последовательные фазы питания растений: фотосинтез готовит углеводы, дыхание перерабатывает их в структурную биомассу растения, образуя в процессе ступенчатого окисления реакционноспособные вещества и освобождая энергию, необходимую для их превращения и процессов жизнедеятельности в целом. Суммарное уравнение дыхания имеет вид:

CHO+ 6O→ 6CO+ 6HO + 2875кДж.

Из этого уравнения становится ясно, почему именно скорость газообмена используют для оценки интенсивности дыхания. Оно было предложено в 1912 г. В. И. Палладиным, который считал, что дыхание состоит из двух фаз – анаэробной и аэробной. На анаэробном этапе дыхания, идущем в отсутствие кислорода, глюкоза окисляется за счет отнятия водорода (дегидрирования), который, по мнению ученого, передается на дыхательный фермент. Последний при этом восстанавливается. На аэробном этапе происходит регенерация дыхательного фермента в окислительную форму. В. И. Палладин впервые показал, что окисление сахара идет за счет непосредственного окисления его кислородом воздуха, поскольку кислород не встречается с углеродом дыхательного субстрата, а связано с его дегидрированием.

Существенный вклад в изучение сути окислительных процессов и химизма процесса дыхания внесли как отечественные (И.П. Бородин, А.Н.Бах, С.П. Костычев, В.И. Палладин), так и зарубежные (А.Л. Лавуазье, Г. Виланд, Г. Кребс) исследователи.

Жизнь любого организма неразрывно связана с непрерывным использованием свободной энергии, генерируемой при дыхании. Неудивительно, что изучению роли дыхания в жизни растения в последнее время отводят центральное место в физиологии растений.


1. Аэробное дыхание

Аэробное дыхание это окислительный процесс, в ходе которого расходуется кислород. При дыхании субстрат без остатка расщепляется до бедных энергией неорганических веществ с высоким выходом энергии. Важнейшими субстратами для дыхания служат углеводы. Кроме того, при дыхании могут расходоваться жиры и белки.

Аэробное дыхание включает два основных этапа:

- бескислородный, в процессе, которого происходит постепенное расщепление субстрата с высвобождением атомов водорода и связыванием с коферментами (переносчиками типа НАД и ФАД);

- кислородный, в ходе которого происходит дальнейшее отщепление атомов водорода от производных дыхательного субстрата и постепенное окисление атомов водорода в результате переноса их электронов на кислород.

На первом этапе вначале высокомолекулярные органические вещества (полисахариды, липиды, белки, нуклеиновые кислоты и др.) под действием ферментов расщепляются на более простые соединения (глюкозу, высшие карбоновые кислоты, глицерол, аминокислоты, нуклеотиды и т.п.) Этот процесс происходит в цитоплазме клеток и сопровождается выделением небольшого количества энергии, которая рассеивается в виде тепла. Далее происходит ферментативное расщепление простых органических соединений.

Примером такого процесса является гликолиз – многоступенчатое бескислородное расщепление глюкозы. В реакциях гликолиза шестиуглеродная молекула глюкозы (С) расщепляется на две трехуглеродные молекулы пировиноградной кислоты (С). При этом образуется две молекулы АТФ, и выделяются атомы водорода. Последние присоединяются к переносчику НАД(никотинамидадениндинклеотид), который переходит в свою восстановительную форму НАД ∙ Н + Н. НАД кофермент, близкий по своей структуре к НАДФ. Оба они представляют собой производные никотиновой кислоты – одного из витаминов группы В. Молекулы обоих коферментов электроположительны (у них отсутствует один электрон) и могут играть роль переносчика как электронов, так и атомов водорода. Когда акцептируется пара атомов водорода, один из атомов диссоциирует на протон и электрон:

а второй присоединяется к НАД или НАДФ целиком:

НАД+ Н + [Н+ е] → НАД ∙ Н + Н.

Свободный протон позднее используется для обратного окисления кофермента. Суммарно реакция гликолиза имеет вид

CHO+2АДФ + 2НРО+ 2 НАД→

2СНО+ 2АТФ + 2 НАД ∙ Н + Н+ 2 HO

Продукт гликолиза – пировиноградная кислота (СНО) – заключает в себе значительную часть энергии, и дальнейшее ее высвобождение осуществляется в митохондриях. Здесь происходит полное окисление пировиноградной кислоты до COи HO. Этот процесс можно разделить на три основные стадии:

1) окислительное декарбоксилирование пировиноградной кислоты;

2) цикл трикарбоновых кислот (цикл Кребса);

3) заключительная стадия окисления – электронтранспортная цепь.

На первой стадии пировиноградная кислота взаимодействует с веществом, которое называют коферментом А, в результате чего образуется ацетилкофермент а с высокоэнергетической связью. При этом от молекулы пировиноградной кислоты отщепляется молекула CO(первая) и атомы водорода, которые запасаются в форме НАД ∙ Н + Н.

Вторая стадия – цикл Кребса (рис. 1)

В цикл Кребса вступает ацетил–КоА, образованный на предыдущей стадии. Ацетил–КоА взаимодействует со щавелево-уксусной кислотой, в результате образуется шестиуглеродная лимонная кислота. Для этой реакции требуется энергия; ее поставляет высокоэнергетическая связь ацетил–КоА. В конце цикла щавелево-лимонная кислота регенерируется в прежнем виде. Теперь она способна вступить в реакцию с новой молекулой ацетил–КоА, и цикл повторяется. Суммарно реакция цикла может быть выражена следующим уравнением:

ацетил-КоА + 3HO + 3НАД+ ФАД + АДФ + НРО→

КоА + 2CO+ 3НАД ∙ Н + Н+ФАД ∙ H+ АТФ.

Таким образом, в результате распада одной молекулы пировиноградной кислоты в аэробной фазе (декарбоксилирование ПВК и цикла Кребса) выделяется 3CO, 4 НАД ∙ Н + Н, ФАД ∙ H. Суммарно реакцию гликолиза, окислительного декарбоксилирования и цикла Кребса можно записать в следующем виде:

CHO+ 6 HO + 10 НАД + 2ФАД →

6CO+ 4АТФ + 10 НАД ∙ Н + Н+ 2ФАД ∙ H.

Третья стадия – электротранспортная цепь.

Пары водородных атомов, отщепляемые от промежуточных продуктов в реакциях дегидрирования при гликолизе и в цикле Кребса, в конце концов, окисляются молекулярным кислородом до HO с одновременным фосфолированием АДФ в АТФ. Происходит это тогда, когда водород, отделившийся от НАД ∙ Hи ФАД ∙ H, передается по цепи переносчиков, встроенных во внутреннюю мембрану митохондрий. Пары атомов водорода 2Н можно рассматривать как 2 Н+ 2е. Движущей силой транспорта атомов водорода в дыхательной цепи является разность потенциалов.

С помощью переносчиков ионы водорода Нпереносятся с внутренней стороны мембраны на ее внешнюю сторону, иначе говоря, из матрикса митохондрии в межмембранное пространство (рис. 2).


При переносе пары электронов от над на кислород они пересекают мембрану три раза, и этот процесс сопровождается выделением на внешнюю сторону мембраны шести протонов. На заключительном этапе протоны переносятся на внутреннюю сторону мембраны и акцептируются кислородом:

В результате такого переноса ионов Нна внешнюю сторону мембраны митохондрий в перимитохондриальном пространстве создается концентрация их, т.е. возникает электрохимический градиент протонов.

Когда протонный градиент достигает определенной величины, ионы водорода из Н-резервуара движутся по специальным каналам в мембране, и их запас энергии используется для синтеза АТФ. В матриксе они соединяются с заряженными частичками О, и образуется вода: 2Н+ О²ˉ → HO.

1.1 Окислительное фосфолирование

Процесс образования АТФ в результате переноса ионов Нчерез мембрану митохондрии получил название окислительного фосфолирования. Он осуществляется при участии фермента АТФ-синтетазы. Молекулы АТФ-синтетазы располагаются в виде сферических гранул на внутренней стороне внутренней мембраны митохондрий.

В результате расщепления двух молекул пировиноградной кислоты и переноса ионов водорода через мембрану по специальным каналам синтезируется в целом 36 молекул АТФ (2 молекулы в цикле Кребса и 34 молекулы в результате переноса ионов Нчерез мембрану).

Суммарное уравнение аэробного дыхания можно выразить следующим образом:

CHO+ O+ 6HO + 38АДФ + 38НРО→

6CO+ 12HO + 38АТФ

Совершенно очевидно, что аэробное дыхание прекратится в отсутствии кислорода, поскольку именно кислород служит конечным акцептором водорода. Если клетки не получают достаточного количества кислорода, все переносчики водорода вскоре полностью насытятся и не смогут передавать его дальше. В результате основной источник энергии дл образования АТФ окажется блокированным.

аэробное дыхание окисление фотосинтез


2. Анаэробное дыхание

Анаэробное дыхание. Некоторые микроорганизмы способны использовать для окисления органических или неорганических веществ не молекулярный кислород, а другие окисленные соединения, например, соли азотной, серной и угольной кислот, превращающиеся при этом в более восстановленные соединения. Процессы идут в анаэробных условиях, и их называют анаэробным дыханием:

2HNO+ 12Н→ N+ 6HO + 2Н

HSO+ 8Н→ HS + 4HO

У микроорганизмов, осуществляющих такое дыхание, конечным акцептором электронов будет не кислород а неорганическое соединения – нитриты, сульфаты и карбонаты. Таким образом, различия между аэробным и анаэробным дыханием заключается в природе конечного акцептора электронов.

2.1 Типы анаэробного дыхания

Основные типы анаэробного дыхания приведены в таблице 1. есть также данные об использовании бактериями в качестве акцепторов электронов Mn, хроматов, хинонов и др.

Таблица 1 Типы анаэробного дыхания у прокариот (по: М.В Гусев, Л.А. Минеева 1992, с изменениями)

Свойство организмов переносить электроны на нитраты, сульфаты и карбонаты обеспечивает в достаточной степени полное окисление органического или неорганического вещества без использования молекулярного кислорода и обуславливает возможность получения большого количества энергии, чем при брожении. При анаэробном дыхании выход энергии только на 10% ниже. Чем при аэробном. Организмы, для которых характерно анаэробное дыхание, имеют набор ферментов электронтранспортной цепи. Но цитохромоксилаза в них заменяется нитратредуктазой (при использовании в качестве акцептора электронов нитрата) или аденилсульфатредуктазой (при использовании сульфата) или другими ферментами.

Организмы, способные осуществлять анаэробное дыхание за счет нитратов, - факультативные анаэробы. Организмы, использующие сульфаты в анаэробном дыхании, относятся к анаэробам.


Вывод

Органические вещества из не органических зеленое растение образует только на свету. Эти вещества используются растением только для питания. Но растения не только питаются. Они дышат, как все живые существа. Дыхание происходит непрерывно днем о ночью. Дышат все органы растения. Растения дышат кислородом, а выделяют углекислый газ, как животные и человек.

Дыхание растений может происходить, как в темноте, так и на свету. Значит, на свету в растении протекают два противоположных процесса. Один процесс - фотосинтез, другой – дыхание. Во время фотосинтеза создаются органические вещества из неорганических и поглощается энергия солнечного света. Во время дыхания в растении расходуются органические вещества. А энергия, необходима для жизнедеятельности, освобождается. На свету в процессе фотосинтеза растения поглощают углекислый газ и выделяют кислород. Вместе с углекислым газом растения на свету поглощают из окружающего воздуха и кислород, необходимый растениям для дыхания, но в гораздо меньших количествах, чем выделяются при образовании сахара. Углекислого газа при фотосинтезе растения поглощают гораздо больше, чем выделяют его придыхании. Декоративные растения в комнате при хорошем освещении выделяют днем значительно больше кислорода, чем поглощают его в темноте ночью.

Дыхание во всех живых органов растения происходит непрерывно. Когда прекращается дыхание, растение, так же как и животное погибает.


Список литературы

1. Физиология и биохимия сельскохозяйственных растений Ф50/Н.Н. Третьяков, Е.И. Кошкин, Н.М. Макрушин и др.; под. ред. Н.Н. Третьякова. – М.; Колос, 2000 – 640 с.

2. Биология в экзаменационных вопросах и ответах Л44/ Лемеза Н.А., Камлюк Л.В.; 7-е изд. – М.: Айрис-пресс, 2003. – 512 с.

3. Ботаника: Учеб. Для 5-6 кл. сред. Шк.-19-е изд./Перераб. А.Н. Сладковым. – М.: Просвещение, 1987. – 256 с.

При аэробном дыхании образующаяся в процессе гликолиза ПВК в конечном итоге полностью окисляется кислородом до СО 2 и воды. В первой фазе пировиноградная кислота расщепляется с образованием СO 2 и водорода. Этот процесс протекает в матриксе митохондрий и включает в себя последовательность реакций, называемую циклом Кребса. Во второй фазе отщепившийся водород через ряд окислительно-восстановительных реакций - в так называемой дыхательной цепи - окисляется в конечном счете молекулярным кислородом до воды. Это происходит на так называемых кристах (гребневидных складках внутренней мембраны митохондрий). Начальные этапы аэробного дыхания представлены на рисунке.

Переходный этап между гликолизом и циклом Кребса. Каждая молекула ПВК поступает в матрикс митохондрий и здесь - в виде ацетильной группы (СН 3 СОО-) - соединяется с веществом, которое называется коферментом А, в результате чего образуется ацетилкофермент А. Ацетильная группа содержит два атома углерода (2С), поэтому для того чтобы она могла образоваться, ПВК (ЗС) должна утратить атом углерода. Отщепление атома углерода в виде С0 2 называется реакцией декарбоксилирования. Это - окислительное декарбоксилирование, поскольку оно сопровождается окислением путем дегидрирования, в результате чего образуется восстановленный НАД.

Цикл Кребса протекает в матриксе митохондрий. Ацетильные группы (2С) вовлекаются в цикл, присоединяясь к ЩУК, в результате чего образуется лимонная кислота (6С). Далее следует цикл реакций, в которых поступившие в цикл ацетильные группы декарбоксилируются с образованием двух молекул СO 2 и дегидрируются с высвобождением четырех пар атомов водорода, присоединяющихся к переносчикам, в результате чего образуются три молекулы восстановленного НАД и одна молекула восстановленного ФАД. Каждый оборот цикла дает также одну молекулу АТФ. (Напомним, что из одной молекулы глюкозы образуются две ацетильные группы, и значит, для окисления каждой молекулы глюкозы требуются два оборота цикла.) В конце цикла ЩУК регенерирует и может теперь присоединить к себе новую ацетильную группу.

Весь водород из молекулы глюкозы оказывается в конечном счете у переносчиков (НАД и ФАД). Весь углерод теряется в виде С02. Вода нужна в качестве источника кислорода в реакциях декарбоксилирования - именно такое происхождение имеет часть кислорода в СO 2 .

68. Анаэробная фаза дыхания (гликолиз). Фосфорилирование субстратное

Гликолиз осуществляется во всех живых клетках организмов. В процессе гликолиза происходит преобразование молекулы гексозы до двух молекул ПВК: С6Н1206 -> 2С3Н402 + 2Н2. Этот окислительный процесс может протекать в анаэробных условиях (в отсутствие кислорода) и идет через ряд этапов. Прежде всего, для того чтобы подвергнуться дыхательному распаду, глюкоза должна быть активирована. Активация глюкозы происходит путем фосфорилирования шестого углеродного атома за счет взаимодействия с АТФ:

глюкоза + АТФ -> глюкозо-6-фосфат + АДФ

Реакция идет в присутствии ионов магния и фермента гексокиназа.

Затем глюкозо-6-фосфат изомеризуется до фруктозо-6-фосфата. Процесс катализируется ферментом фосфоглюкоизомеразой: глюкозо-6-фосфат -> фруктозо-6-фосфат

Далее происходит еще одно фосфорилирование при участии АТФ. Фосфор­ная кислота присоединяется к первому углеродному атому молекулы фруктозы, процесс катализируется ферментом фосфофруктокиназой: фруктозо-6-фосфат + АТФ -> фруктозо-1,6-дифосфат + АДФ

Дальнейшие реакции, составляющие процесс гликолиза, складываются следующим образом: фруктозо-1,6-дифосфат расщепляется с образованием двух триоз – глицеральдегид три фосфат и диоксиацетонтрифосфат, реакция катализируется ферментом альдолазой.

Молекула диоксиацетонтрифосфата при участии фермента триозофосфатизомеразы превращается также в 3-фосфоглицериновый альдегид (ФГА). Дальнейшим превращениям подвергается именно ФГА, окисляясь до 1,3-дифосфоглицериновой кислоты (ДФГК). Это важнейший этап гликолиза. Процесс идет с участием неорганического фосфата (Н3Р04) и фермента глицеральдегид-3-фосфатдегидро-геназы. Сущность процесса заключается в окислении альдегидной группы ФГА в карбоксильную ДФГК.

На следующем этапе в 1,3-дифосфоглицериновой кислоте образуется АТФ. Процесс катализируется ферментом фосфоглицераткиназой.

Затем 3-ФГК превращается в 2-ФГК. Далее происходит дегидратация ФГК. Реакция идет при участии фермента енолазы в присутствии ионов Mg2+ или Мп2+. Образуется фосфоенолпировиноградная кислота (ФЕП). Затем фермент пируваткиназа переносит богатую энергией фосфатную группу на АДФ с образованием АТФ и пировиноградной кислоты. Для протекания реакции необходимо присутствие ионов Mg2+ или Мn2+. Поскольку при распаде одной молекулы глюкозы образуются две молекулы ФГА, то все реакции повторяются дважды.

В результате процесса гликолиза образуются четыре молекулы АТФ, однако две из них покрывают расход на первоначальное активирование субстрата. Следовательно, накапливаются две молекулы АТФ.

Реакция гликолиза носит название субстратного фосфорилирования, поскольку макроэргические связи возникают на молекуле окисляемого субстрата.

Аэробное дыхание (терминальное окисление, или окислительное фосфорилирование) – это совокупность катаболитических процессов на мембранах митохондрий, завершающихся полным окислением органических веществ с участием молекулярного кислорода. При этом роль протонного резервуара играет межмембранный матрикс – пространство между внешней и внутренней мембранами.

Электроны, потерявшие энергию, поступают на комплекс ферментов под названием цитохромоксидаза. Цитохромоксидаза использует электроны для активации (восстановления) молекулярного кислорода О 2 до О 2 2– . Ионы О 2 2– присоединяют протоны, образуя пероксид водорода, который при помощи каталазы разлагается на Н 2 О и О 2 . Последовательность описанных реакций можно представить в виде схемы:

2О 2 + 2ē → 2О 2 2– ; 2О 2 2– + 4Н + → 2Н 2 О 2 ; 2Н 2 О 2 → 2Н 2 О + О 2

Суммарное уравнение аэробного дыхания:

С 6 Н 12 О 6 + 6 О 2 + 38 АДФ + 38 Ф → 6 СО 2 + 6 Н 2 О + 38 АТФ + Q

Вопросы для самоконтроля

1.В чем сущность процесса дыхания?

2.Каково суммарное уравнение процесса дыхания?

3.В чем состоит окислительное фосфорилирование?

4.В чем заключается гликолиз?

5.Что охватывает цикл Кребса?

6.Чем характеризуются анаэробное дыхание и спиртовое брожение?

7.Как происходят масляно-кислое и молочно-кислое брожения? Где они встречаются?

8. Какова энергетическая сторона процесса дыхания и процесса брожения?

9. Какие опыты доказывают наличие процесса дыхания у растений?

10. Что называется дыхательным коэффициентом?

ЛЕКЦИЯ 6

Тема: Потребность растений в элементах минерального питания. Макроэлементы, микроэлементы. Питательные смеси для культивирования растений и изолированных клеток. Взаимодействие ионов. Особенности почвы как питающего растения субстрата. Проникновение ионов в растительную клетку. Активный и пассивный транспорт ионов через мембрану.

Цель лекции: Показать потребность растений в элементах минерального питания. Питательные смеси для культивирования растений и изолированных клеток, макроэлементы, микроэлементы. Активный и пассивный транспорт ионов через мембрану.

Минеральное питание – это поглощение минеральных веществ в виде ионов, их передвижение по растению и включение в обмен веществ . В составе растений обнаружены почти все существующие на Земле химические элементы. Элементы питания поглощаются из воздуха - в форме углекислого газа (CO 2) и из почвы - в форме воды (H 2 O) и ионов минеральных солей. У высших наземных растений различают воздушное, или листовое, питание (Фотосинтез ) и почвенное, или корневое, питание (Минеральное питание растений ). Низшие растения (бактерии, грибы, водоросли) поглощают CO 2 , H 2 O и соли всей поверхностью тела.


Почва является необходимым и незаменимым субстратом, в котором растения укрепляются своими корнями, и из которого черпают влагу и элементы минерального питания. Велика роль почвы в формировании и сохранении биологического разнообразия.
С другой стороны - потоки всех элементов в биосфере проходят через почву, которая посредством специфических механизмов регулирует их направленность и интенсивность.

Одноклеточные организмы и водные растения поглощают ионы всей поверхностью, высшие наземные растения - поверхностными клетками корня , в основном корневыми волосками .

Через корень растения поглощают из почвы главным образом ионы минеральных солей, а также некоторые продукты жизнедеятельности почвенных микроорганизмов и корневые выделения др. растений. Ионы сначала адсорбируются на клеточных оболочках, затем проникают в цитоплазму через плазмалемму. Катионы (за исключением К+) проникают через мембрану пассивно, путём диффузии, анионы, а также К + (при низких концентрациях) - активно, с помощью молекулярных «ионных насосов», транспортирующих ионы с затратой энергии. Каждый элемент минерального питания играет в обмене веществ определённую роль и не может быть полностью заменен др. элементом. Анализ сухого вещества растений показывает, что в нем содержатся углерод (45 %), кислород (42 %), водород (6,5 %), азот (1,5 %), зольные элементы (5 %).

Все элементы, встречающиеся в растениях, принято делить на три группы:

Макроэлементы . 2. Микроэлементы. 3. Ультрамикроэлементы .

Ионы, поступающие в раст. клетку вступают в определенные взаимодействия, и типы этих взаимодействий различны.

Различают такие типы взаимодействий как антогонизм, синергизм, аддитивность.

Антогонизм ионов – это снижение одними катионами ядовитого эффекта других, обусловленного их взаимодействием с коллоидами протоплазмы. Синергизм - это комбинированное воздействие двух или более ионов, характеризующееся тем, что их объединённое биологическое действие существенно превосходит эффект каждого отдельно взятого компонента. Аддитивность – эффект совместного действия ионов равный сумме эффектов действия каждого вещества в отдельности.

В естественных условиях, растения получают необходимые вещества непосредственно из почвы, через корневую систему. В искусственных условиях чаще всего для выращивания растений используют метод гидропоники. Гидропоника (от гидро… и греч. pónos - работа) - выращивание растений не в почве, а в специальном питательном растворе. Питательный раствор представляет собой водный раствор веществ, необходимых растению для жизни и роста. При гидропонном методе выращивания растений все элементы должны содержаться в питательном растворе в оптимальном количестве.

Вопросы для самоконтроля

1. Какие элементы являются органогенами, их процентное содержание в сухом веществе растения?

2. Какие зольные микроэлементы вы знаете? Какова их роль в растении?

3. Какие микроэлементы вам известны? Какую роль они играют в жизни растений?

4. В чем сущность нитрификации и денитрификации?

5. Дайте общую характеристику макро и микроэлементов.

6. Типы взаимодействия ионов в растительных клетках: синергизм, аддитивность, антогогизм.