Перевод десятичных чисел в дробь и наоборот — онлайн калькулятор. Перевод обыкновенной дроби в десятичную дробь и обратно, правила, примеры Перевести десятичное число в дробь онлайн калькулятор

  • 18.04.2024

Материалов по дробям и изучать последовательно. Ниже для вас подробная информация с примерами и пояснениями.

1. Смешанное число в обыкновенную дробь. Запишем в общем виде число:

Запоминаем простое правило – целую часть умножаем на знаменатель и прибавляем числитель, то есть:

Примеры:


2. Наоборот, обыкновенную дробь в смешанное число. *Конечно, это возможно сделать только с неправильной дробью (когда числитель больше знаменателя).

При «небольших» числах никаких действий, в общем, и не нужно делать, результат «видно» сразу, например, дроби:

*Подробнее:

15:13 = 1 остаток 2

4:3 = 1 остаток 1

9:5 = 1 остаток 4

А вот если числа будут более, то без вычислений не обойтись. Здесь всё просто – делим уголком числитель на знаменатель до тех пор пока остаток не получится менее делителя. Схема деления:


Например:

*Числитель у нас – это делимое, знаменатель – это делитель.


Получаем целую часть (неполное частное) и остаток. Записываем – целое, затем дробь (в числителе остаток, а знаменатель оставляем тот же):

3. Десятичную переводим в обыкновенную.

Частично в первом пункте, где рассказывали про десятичные дроби мы уже коснулись этого. Как слышим так и записываем. Например — 0,3; 0,45; 0,008; 4,38; 10,00015

Первые три дроби у нас без целой части. А четвёртая и пятая её имеют, переведём их в обыкновенные, это делать уже умеем:

*Мы видим, что дроби можно ещё и сократить, например 45/100 =9/20, 38/100=19/50 и другие, но мы здесь делать этого не будем. По сокращению вас ожидает отдельный пункт ниже, где подробно всё разберём.

4. Обыкновенную переводим в десятичную.

Тут не всё так просто. По каким-то дробям сразу видно и ясно, что с ней сделать, чтобы она стала десятичной, например:

Используем наше замечательное основное свойство дроби – умножаем числитель и знаменатель соответственно на 5, 25, 2, 5, 4, 2, получим:


Если имеется целая часть, то тоже ничего сложного:

Умножаем дробную часть соответственно на 2, 25, 2 и 5, получим:

А есть такие, по которым без опыта и не определить, что их можно перевести в десятичные, например:

На какие числа умножать числитель и знаменатель?

Тут опять на помощь приходит проверенный способ – деление уголком, способ универсальный, им для перевода обыкновенной дроби в десятичную можно пользоваться всегда:


Так вы сможете всегда определить переводится ли дробь в десятичную. Дело в том, что не каждую обыкновенную дробь можно перевести в десятичную, например такие как 1/9, 3/7, 7/26 не переводятся. А что же тогда получается за дробь при делении 1 на 9, 3 на 7, 5 на 11? Отвечаю – бесконечная десятичная (говорили о них в пункте 1). Разделим:


На этом всё! Успеха вам!

С уважением, Александр Крутицких.

Дробь представляет собой число, которое состоит из одной или нескольких долей единицы. В математике существует три вида дробей: обыкновенные, смешанные и десятичные.


  • Обыкновенные дроби

Обыкновенная дробь записывается как соотношение, в котором в числителе отражается, сколько взято частей от числа, а знаменатель показывает, на сколько частей разделена единица. Если числитель меньше знаменателя, то перед нами правильная дробь.Например: ½, 3/5, 8/9.


Если числитель равен знаменателю или больше его, то мы имеем дело с неправильной дробью. Например: 5/5, 9/4, 5/2 При делении числителя может получиться конечное число. Например, 40/8 = 5. Следовательно, любое целое число может быть записано в виде обыкновенной неправильной дроби или ряда таких дробей. Рассмотрим записи одного и того же числа в виде ряда различных .

  • Смешанные дроби

В общем виде смешанная дробь может быть представлена формулой:


Таким образом, смешанная дробь записывается как целое число и обыкновенная правильная дробь, а под такой записью понимают сумму целого и его дробной части.

  • Десятичные дроби

Десятичная дробь – это особая разновидность дроби, у которой знаменатель может быть представлен как степень числа 10. Существуют бесконечные и конечные десятичные дроби. При записи этой разновидности дроби сначала указывается целая часть, затем через разделитель (точку или запятую) фиксируется дробная часть.


Запись дробной части всегда определяется ее размерностью. Десятичная запись выглядит следующим образом:

Правила перевода между различными видами дробей

  • Перевод смешанной дроби в обыкновенную

Смешанную дробь можно перевести только в неправильную. Для перевода необходимо целую часть привести и тому же знаменателю, что и дробную. В общем виде это будет выглядеть следующим образом:
Рассмотрим использование этого правила на конкретных примерах:


  • Перевод обыкновенной дроби в смешанную

Неправильную обыкновенную дробь можно превратить в смешанную путем простого деления, в результате которого находится целая часть и остаток (дробная часть).


Для примера переведем дробь 439/31 в смешанную:
​​

  • Перевод обыкновенной дроби

В некоторых случаях перевести дробь в десятичную достаточно просто. В этом случае применяется основное свойство дроби, числитель и знаменатель умножаются на одно и то же числу, для того, чтобы привести делитель к степени числа 10.


Например:



В некоторых случаях может понадобиться найти частное путем деления уголком или с помощью калькулятора. А некоторые дроби невозможно привести к конечной десятичной дроби. Например, дробь 1/3 при делении никогда не даст конечный результат.

С помощью калькулятора дробей вы можете сложить дроби , вычитать дроби , умножить дроби , делить дроби , возвести дроби в целую или дробную степень , преобразовать обыкновенную дробь в смешанное число (дробь с целой частью) и обратно, преобразовать дробь в десятичную дробь (десятичное число) , выполнить упрощение дроби .

Если дробь состоит только из целой части, то дробную часть можно оставить пустым. Если знаменатель дроби не вводить, то предполагается, что она равна 1. Если дробь не имеет целую часть, то целую часть можно оставить пустым.

Кнопка в верхем правом углу исходной дроби открывает меню (Рис.1) для преобразования исходной дроби ("Строка ввода" - преобразует дробь в виде числитель/знаменатель, "Дробь"- преобразует строку в дробь, и т.д.).

Дробь можно ввести в виде строки. Для этого нужно нажимать на кнопку и в открывающем меню (Рис 1.) выбрать "Строка ввода". В новом окне нужно набрать дробь в виде a/b, где a и b целые или десятичные числа (b>0). Примеры 45/5, 6.6/76.4, -7/6.7, и т.д.

Нажимая на вычисленных дробях открывается меню (Рис.2), что позволяет записать данную дробь в исходные дроби A и B, а также преобразовать на месте дроби в обыкновенную дробь, смешанную дробь или в десятичное число.

Кнопка Действие
(·) степень Выбранный дробь возводит в степень
√(·) Вычисляет квадратный корень от выбранной дроби
Обыкновенная дробь Преобразует выбранную дробь к виду числитель/знаменатель
Упрощение дроби Пытается упростить выбранную дробь
Смешанная дробь Преобразует выбранный дробь в смешанное число
Десятичная дробь Преобразует выбранный дробь в десятичное число
Удаляет данный блок
Распечатка выражения на принтере

Вычисление суммы, разности, произведения и частного двух дробей онлайн

Онлайн калькулятором дробей можно вычислить сумму, разность, произведение и частное дробей.

Для вычисления суммы, разности, произведения и частного дробей:

  1. Введите элементы дробей A и В.
  2. Нажмите на кнопку "A+B ","A-B","A×B" или "A:B".

Вычисление степени дроби онлайн

Дробь можно возвести в целую или дробную степень. Если дробь отрицательный и степень также является дробью то степень дроби не определен.

Если нам нужно разделить 497 на 4, то при делении мы увидим, что 497 не делится на 4 нацело, т.е. остаётся остаток от деления. В таких случаях говорят, что выполнено деление с остатком , и решение записывают в таком виде:
497: 4 = 124 (1 остаток).

Компоненты деления в левой части равенства называют так же, как при делении без остатка: 497 - делимое , 4 - делитель . Результат деления при делении с остатком называют неполным частным . В нашем случае это число 124. И, наконец, последний компонент, которого нет в обычном делении, - остаток . В тех случаях, когда остатка нет, говорят, что одно число разделилось на другое без остатка, или нацело . Считают, что при таком делении остаток равен нулю. В нашем случае остаток равен 1.

Остаток всегда меньше делителя.

Проверку при делении можно сделать умножением. Если, например, имеется равенство 64: 32 = 2, то проверку можно сделать так: 64 = 32 * 2.

Часто в случаях, когда выполняется деление с остатком, удобно использовать равенство
а = b * n + r ,
где а - делимое, b - делитель, n - неполное частное, r - остаток.

Частное от деления натуральных чисел можно записать в виде дроби.

Числитель дроби - это делимое, а знаменатель - делитель.

Поскольку числитель дроби - это делимое, а знаменатель - делитель, считают, что черта дроби означает действие деление . Иногда бывает удобно записывать деление в виде дроби, не используя знак «:».

Частное от деления натуральных чисел m и n можно записать в виде дроби \(\frac{m}{n} \), где числитель m - делимое, а знаменатель п - делитель:
\(m:n = \frac{m}{n} \)

Верны следующие правила:

Чтобы получить дробь \(\frac{m}{n} \), надо единицу разделить на n равных частей (долей) и взять m таких частей.

Чтобы получить дробь \(\frac{m}{n} \), надо число m разделить на число n.

Чтобы найти часть от целого, надо число, соответствующее целому, разделить на знаменатель и результат умножить на числитель дроби, которая выражает эту часть.

Чтобы найти целое по его части, надо число, соответствующее этой части, разделить на числитель и результат умножить на знаменатель дроби, которая выражает эту часть.

Если и числитель, и знаменатель дроби умножить на одно и то же число (кроме нуля), величина дроби не изменится:
\(\large \frac{a}{b} = \frac{a \cdot n}{b \cdot n} \)

Если и числитель, и знаменатель дроби разделить на одно и то же число (кроме нуля), величина дроби не изменится:
\(\large \frac{a}{b} = \frac{a: m}{b: m} \)
Это свойство называют основным свойством дроби .

Два последних преобразования называют сокращением дроби .

Если дроби нужно представить в виде дробей с одним и тем же знаменателем, то такое действие называют приведением дробей к общему знаменателю .

Правильные и неправильные дроби. Смешанные числа

Вы уже знаете, что дробь можно получить, если разделить целое на равные части и взять несколько таких частей. Например, дробь \(\frac{3}{4} \) означает три четвёртых доли единицы. Во многих задачах предыдущего параграфа обыкновенные дроби использовались для обозначения части целого. Здравый смысл подсказывает, что часть всегда должна быть меньше целого, но как тогда быть с такими дробями, как, например, \(\frac{5}{5} \) или \(\frac{8}{5} \)? Ясно, что это уже не часть единицы. Наверное, поэтому такие дроби, у которых числитель больше знаменателя или равен ему, называют неправильными дробями . Остальные дроби, т. е. дроби, у которых числитель меньше знаменателя, называют правильными дробями .

Как вы знаете, любую обыкновенную дробь, и правильную, и неправильную, можно рассматривать как результат деления числителя на знаменатель. Поэтому в математике, в отличие от обычного языка, термин «неправильная дробь» означает не то, что мы что-то сделали неправильно, а только то, что у этой дроби числитель больше знаменателя или равен ему.

Если число состоит из целой части и дроби, то такие дроби называются смешанными .

Например:
\(5:3 = 1\frac{2}{3} \) : 1 - целая часть, а \(\frac{2}{3} \) - дробная часть.

Если числитель дроби \(\frac{a}{b} \) делится на натуральное число n, то, чтобы разделить эту дробь на n, надо её числитель разделить на это число:
\(\large \frac{a}{b} : n = \frac{a:n}{b} \)

Если числитель дроби \(\frac{a}{b} \) не делится на натуральное число n, то, чтобы разделить эту дробь на n, надо её знаменатель умножить на это число:
\(\large \frac{a}{b} : n = \frac{a}{bn} \)

Заметим, что второе правило справедливо и в том случае, когда числитель делится на n. Поэтому мы можем его применять тогда, когда трудно с первого взгляда определить, делится числитель дроби на n или нет.

Действия с дробями. Сложение дробей.

С дробными числами, как и с натуральными числами, можно выполнять арифметические действия. Рассмотрим сначала сложение дробей. Легко сложить дроби с одинаковыми знаменателями. Найдем, например, сумму \(\frac{2}{7} \) и \(\frac{3}{7} \). Легко понять, что \(\frac{2}{7} + \frac{2}{7} = \frac{5}{7} \)

Чтобы сложить дроби с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить прежним.

Используя буквы, правило сложения дробей с одинаковыми знаменателями можно записать так:
\(\large \frac{a}{c} + \frac{b}{c} = \frac{a+b}{c} \)

Если требуется сложить дроби с разными знаменателями, то их предварительно следует привести к общему знаменателю. Например:
\(\large \frac{2}{3}+\frac{4}{5} = \frac{2\cdot 5}{3\cdot 5}+\frac{4\cdot 3}{5\cdot 3} = \frac{10}{15}+\frac{12}{15} = \frac{10+12}{15} = \frac{22}{15} \)

Для дробей, как и для натуральных чисел, справедливы переместительное и сочетательное свойства сложения.

Сложение смешанных дробей

Такие записи, как \(2\frac{2}{3} \), называют смешанными дробями . При этом число 2 называют целой частью смешанной дроби, а число \(\frac{2}{3} \) - ее дробной частью . Запись \(2\frac{2}{3} \) читают так: «две и две трети».

При делении числа 8 на число 3 можно получить два ответа: \(\frac{8}{3} \) и \(2\frac{2}{3} \). Они выражают одно и то же дробное число, т.е \(\frac{8}{3} = 2 \frac{2}{3} \)

Таким образом, неправильная дробь \(\frac{8}{3} \) представлена в виде смешанной дроби \(2\frac{2}{3} \). В таких случаях говорят, что из неправильной дроби выделили целую часть .

Вычитание дробей (дробных чисел)

Вычитание дробных чисел, как и натуральных, определяется на основе действия сложения: вычесть из одного числа другое - это значит найти такое число, которое при сложении со вторым дает первое. Например:
\(\frac{8}{9}-\frac{1}{9} = \frac{7}{9} \) так как \(\frac{7}{9}+\frac{1}{9} = \frac{8}{9} \)

Правило вычитания дробей с одинаковыми знаменателями похоже на правило сложения таких дробей:
чтобы найти разность дробей с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй, а знаменатель оставить прежним.

С помощью букв это правило записывается так:
\(\large \frac{a}{c}-\frac{b}{c} = \frac{a-b}{c} \)

Умножение дробей

Чтобы умножить дробь на дробь, нужно перемножить их числители и знаменатели и первое произведение записать числителем, а второе - знаменателем.

С помощью букв правило умножения дробей можно записать так:
\(\large \frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d} \)

Пользуясь сформулированным правилом, молено умножать дробь на натуральное число, на смешанную дробь, а также перемножать смешанные дроби. Для этого нужно натуральное число записать в виде дроби со знаменателем 1, смешанную дробь - в виде неправильной дроби.

Результат умножения надо упрощать (если это возможно), сокращая дробь и выделяя целую часть неправильной дроби.

Для дробей, как и для натуральных чисел, справедливы переместительное и сочетательное свойства умножения, а также распределительное свойство умножения относительно сложения.

Деление дробей

Возьмем дробь \(\frac{2}{3} \) и «перевернем» ее, поменяв местами числитель и знаменатель. Получим дробь \(\frac{3}{2} \). Эту дробь называют обратной дроби \(\frac{2}{3} \).

Если мы теперь «перевернем» дробь \(\frac{3}{2} \), то получим исходную дробь \(\frac{2}{3} \). Поэтому такие дроби, как \(\frac{2}{3} \) и \(\frac{3}{2} \) называют взаимно обратными .

Взаимно обратными являются, например, дроби \(\frac{6}{5} \) и \(\frac{5}{6} \), \(\frac{7}{18} \) и \(\frac{18}{7} \).

С помощью букв взаимно обратные дроби можно записать так: \(\frac{a}{b} \) и \(\frac{b}{a} \)

Понятно, что произведение взаимно обратных дробей равно 1 . Например: \(\frac{2}{3} \cdot \frac{3}{2} =1 \)

Используя взаимно обратные дроби, можно деление дробей свести к умножению.

Правило деления дроби на дробь:
чтобы разделить одну дробь на другую, нужно делимое умножить на дробь, обратную делителю.

Используя буквы, правило деления дробей можно записать так:
\(\large \frac{a}{b} : \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} \)

Если делимое или делитель является натуральным числом или смешанной дробью, то, для того чтобы воспользоваться правилом деления дробей, его надо предварительно представить в виде неправильной дроби.

Достаточное количество людей задаются вопросами о том, как перевести обыкновенную дробь в дробь десятичную. Способов существует несколько. Выбор конкретного способа зависит от вида дроби, которую нужно перевести в другой вид, а точнее, от числа в её знаменателе. Однако необходимо для надёжности указать, что обыкновенная дробь – это дробь, которая записывается с числителем и знаменателем, например, 1/2. Чаще черту между числителем и знаменателем проводят горизонтально, а не наклонно. Десятичная дробь пишется обыкновенным числом с запятой: например, 1,25; 0,35 и т.д.

Итак, для того, чтобы перевести обыкновенную дробь в десятичную без калькулятора необходимо:

Обратить внимание на знаменатель обыкновенной дроби. Если знаменатель можно легко множить до 10 на одинаковое с числителем число, то следует воспользоваться именно этим способом, как наиболее простым. К примеру, обыкновенная дробь 1/2 легко умножается в числителе и знаменателе на 5, в результате получается число 5/10, которое уже можно записать дробью десятичной: 0,5. Данное правило основано на том, что десятичная дробь всегда имеет в знаменателе круглое число: 10, 100, 1000 и подобные. Следовательно, если помножить числитель и знаменатель дроби, то необходимо добиваться получения в знаменателе именно такого числа в результате умножения независимо от того, что получается в числителе.

Существуют обыкновенные дроби, подсчёт которых после умножения представляет определённые сложности. Например, достаточно трудно определить, на сколько следует помножить дробь 5/16, чтобы получить в знаменателе одно из приведённых выше чисел. В этом случае следует воспользоваться обычным делением, которое производится столбиком. В ответе должна получиться десятичная дробь, которая и ознаменует окончание операции перевода. В вышеприведенном примере получается число, равное 0,3125. Если вычисления столбиком представляют затруднения, то без помощи калькулятора уже не обойтись.

Наконец, бывают обыкновенные дроби, которые в десятичные не переводятся. Например, при переводе обыкновенной дроби 4/3 получается результат 1,33333, где тройка повторяется до бесконечности. Калькулятор также не избавит от повторяющейся тройки. Таких дробей существует несколько, их необходимо просто знать. Выходом из приведённой ситуации может быть округление, если условия решаемого примера или задачи позволяют округлять. Если же условия этого не позволяют, а ответ необходимо записать именно в виде десятичной дроби, значит, пример или задача решены неправильно, и следует вернуться на несколько этапов назад, чтобы обнаружить ошибку.

Таким образом, перевести обыкновенную дробь в десятичную довольно таки несложно, с это задачей нетрудно справиться без помощи калькулятора. Ещё проще выглядит перевод десятичных дробей в обыкновенные, выполняя действия обратные описанным в способе 1.

Видео: 6 класс. Перевод обыкновенной дроби в десятичную дробь.