Анатомия глазных мышц. Мышцы глаза

  • 05.03.2024

Глаз должен выучиться видеть, как язык - говорить.

Д. Дидро

Глазодвигательный аппарат - сложный сенсомоторный механизм, физиологическое значение которого определяется двумя его главными функциями: двигательной (моторной) и сенсорной (чувствительной).

Двигательная функция глазодвигательного аппарата обеспечивает наведение обоих глаз, их зрительных осей и центральных ямок сетчаток на объект фиксации, сенсорная - слияние двух монокулярных (правого и левого) изображений в единый зрительный образ.

Иннервация глазодвигательных мышц черепными нервами обусловливает тесную связь неврологической и глазной патологии, вследствие чего необходим комплексный подход к диагностике.

18.1. Анатомо-физиологические особенности

Движения глазного яблока осуществляются с помощью шести глазодвигательных мышц: четырех прямых - наружной и внутренней (m. rectus externum, m. rectus internum), верхней и нижней (m. rectus superior, m. rectus inferior) и двух косых - верхней и нижней (m. obliguus superior, m. obliguus inferior).

Все прямые и верхняя косая мышца начинаются у сухожильного кольца, расположенного вокруг канала зрительного нерва у вершины орбиты и сращенного с ее надкостницей (рис. 18.1). Прямые мышцы в виде лент направляются кпереди парал-

лельно соответствующим стенкам орбиты, образуя так называемую мышечную воронку. У экватора глаза они прободают тенонову капсулу (влагалище глазного яблока) и, не доходя до лимба, вплетаются в поверхностные слои склеры. Тенонова капсула снабжает мышцы фасциальным покрытием, которое отсутствует в проксимальном отделе у того места, где начинаются мышцы.

Верхняя косая мышца берет начало у сухожильного кольца между верхней и внутренней прямыми мышцами и идет кпереди к хрящевому блоку, находящемуся в верхневнутреннем углу орбиты у ее края. У блока мышца превращается в сухожилие и, пройдя через блок, поворачивает кзади и кнаружи. Располагаясь под верхней прямой

Рис. 18.1. Мышцы глаза [Брошевский Т. И., Бочкарева А. А., 1983].

мышцей, она прикрепляется к склере кнаружи от вертикального меридиана глаза. Две трети всей длины верхней косой мышцы находятся между вершиной орбиты и блоком, а одна треть - между блоком и местом прикрепления к глазному яблоку. Эта часть верхней косой мышцы и определяет направление движения глазного яблока при ее сокращении.

В отличие от упомянутых пяти мышц нижняя косая мышца начинается у нижневнутреннего края орбиты (в зоне входа слезно-носового канала), идет кзади кнаружи между стенкой орбиты и нижней прямой мышцей в сторону наружной прямой мышцы и веерообразно прикрепляется под ней к склере в задненаружном отделе глазного яблока, на уровне горизонтального меридиана глаза.

От фасциальной оболочки глазодвигательных мышц и теноновой капсулы идут многочисленные тяжи к стенкам орбиты.

Фасциально-мышечный аппарат обеспечивает фиксированное положение глазного яблока, придает плавность его движениям.

Иннервацию мышц глаза осуществляют три черепных нерва:

Глазодвигательный нерв - n. oculomotorius (III пара) - иннервирует внутреннюю, верхнюю и нижнюю прямые мышцы, а также нижнюю косую;

Блоковый нерв - n. trochlearis (IV пара) - верхнюю косую мышцу;

Отводящий нерв - n. abducens (VI пара) - наружную прямую мышцу.

Все эти нервы проходят в глазницу через верхнюю глазничную щель.

Глазодвигательный нерв после входа в орбиту делится на две ветви. Верхняя ветвь иннервирует верхнюю прямую мышцу и мышцу, поднимающую верхнее веко, нижняя - внутреннюю и нижнюю прямые мышцы, а также нижнюю косую.

Ядро глазодвигательного нерва и находящееся позади него и рядом с ним ядро блокового нерва (обеспечивает работу косых мышц) расположены на дне сильвиева водопровода (водопровод мозга). Ядро отводящего нерва (обеспечивает работу наружной прямой мышцы) находится в варолиевом мосту подо дном ромбовидной ямки.

Прямые глазодвигательные мышцы прикрепляются к склере на расстоянии 5-7 мм от лимба, косые мышцы - на расстоянии 16-19 мм.

Ширина сухожилий у места прикрепления мышц колеблется от 6-7 до 8-10 мм. Из прямых мышц наиболее широкое сухожилие у внутренней прямой мышцы, которая играет основную роль в осуществлении функции сведения зрительных осей (конвергенция).

Линия прикрепления сухожилий внутренней и наружной мышц, т. е. их мышечная плоскость, совпадает с плоскостью горизонтального меридиана глаза и концентрична лимбу. Это обусловливает горизонтальные движения глаз, их приведение, поворот к носу - аддукцию при сокращении внутренней прямой мышцы и отведение, поворот к виску - абдукцию при сокращении наружной прямой мышцы. Таким образом, эти мышцы по характеру действия являются антагонистами.

Верхняя и нижняя прямые и косые мышцы осуществляют в основном вертикальные движения глаза. Линия прикрепления верхней и нижней прямых мышц располагается несколько косо, их височный конец находится дальше от лимба, чем носовой. Вследствие этого мышечная плоскость этих мышц не совпадает с плоскостью вертикального меридиана глаза и образует с ним угол, равный в среднем 20 o и открытый к виску.

Такое прикрепление обеспечивает поворот глазного яблока при действии этих мышц не только кверху (при сокращении верхней прямой

мышцы) или книзу (при сокращении нижней прямой), но одномоментно и кнутри, т. е. аддукцию.

Косые мышцы образуют с плоскостью вертикального меридиана угол около 60°, открытый к носу. Это обусловливает сложный механизм их действия: верхняя косая мышца опускает глаз и производит его отведение (абдукцию), нижняя косая мышца является поднимателем и также абдуктором.

Помимо горизонтальных и вертикальных движений, указанные четыре глазодвигательные мышцы вертикального действия осуществляют торзионные движения глаз по часовой стрелке или против нее. При этом верхний конец вертикального меридиана глаза отклоняется к носу (инторзии) или к виску (эксторзии).

Таким образом, глазодвигательные мышцы обеспечивают следующие движения глаза:

Приведение (аддукцию), т. е. движение его в сторону носа; эту функцию выполняет внутренняя прямая мышца, дополнительно - верхняя и нижняя прямые мышцы; их называют аддукторами;

Отведение (абдукцию), т. е. движение глаза в сторону виска; эту функцию выполняет наружная прямая мышца, дополнительно - верхняя и нижняя косые; их называют абдукторами;

Движение вверх - при действии верхней прямой и нижней косой мышц; их называют поднимателями;

Движение вниз - при действии нижней прямой и верхней косой мышц; их называют опускателями.

Сложные взаимодействия глазодвигательных мышц проявляются в том, что при движениях в одних направлениях они действуют как синергисты (например, частичные аддукторы - верхняя и нижняя прямые мышцы, в других - как антаго-

нисты (верхняя прямая - подниматель, нижняя прямая - опускатель).

Глазодвигательные мышцы обеспечивают два типа содружественных движений обоих глаз:

Односторонние движения (в одну и ту же сторону - вправо, влево, вверх, вниз) - так называемые верзионные движения;

Противоположные движения (в разные стороны) - вергентные, например к носу - конвергенция (сведение зрительных осей) или к виску - дивергенция (разведение зрительных осей), когда один глаз поворачивается вправо, другой - влево.

Вергентные и верзионные движения могут совершаться также в вертикальном и косом направлениях.

Описанные выше функции глазодвигательных мышц характеризуют моторную деятельность глазодвигательного аппарата, сенсорная же проявляется в функции бинокулярного зрения.

Бинокулярное зрение, т. е. зрение двумя глазами, когда предмет воспринимается как единый образ, возможно только при четких содружественных движениях глазных яблок. Глазные мышцы обеспечивают установку двух глаз на объект фиксации так, чтобы его изображение попадало на идентичные точки сетчаток обоих глаз. Только в этом случае возникает одиночное восприятие объекта фиксации. Идентичными, или корреспондирующими, являются центральные ямки и точки сетчаток, удаленные на одинаковое расстояние от центральных ямок в одном и том же меридиане. Точки же сетчаток, отстоящие на разные расстояния от центральных ямок, называются диспаратными, несоответствующими (неидентичными). Они не обладают врожденным свойством одиночного восприятия. При попадании изображения объекта фиксации на неидентичные точки сетчатки возникает двоение,

или диплопия (греч. diplos - двойной, opos - глаз), - весьма мучительное состояние. Это происходит, например, при косоглазии, когда одна из зрительных осей смещена в ту или другую сторону от общей точки фиксации.

Два глаза расположены в одной фронтальной плоскости на некотором расстоянии друг от друга, поэтому в каждом из них формируются не вполне одинаковые изображения предметов, находящихся спереди и сзади объекта фиксации. Вследствие этого неизбежно возникает двоение, называемое физиологическим. Оно нейтрализуется в центральном отделе зрительного анализатора, но служит условным сигналом для восприятия третьего пространственного измерения, т. е. глубины.

Такое смещение изображений предметов (ближе и дальше расположенных от точки фиксации) вправо и влево от желтого пятна на сетчатках обоих глаз создает так называемую поперечную диспарацию (смещение) изображений и попадание (проекцию) их на диспаратные участки (неидентичные точки), что и вызывает двоение, в том числе физиологическое.

Поперечная диспарация - первичный фактор глубинного восприятия. Есть вторичные, вспомогательные, факторы, помогающие в оценке третьего пространственного измерения. Это - линейная перспектива, величина объектов, расположение светотеней, что помогает восприятию глубины, особенно при наличии одного глаза, когда поперечная диспарация исключается.

С понятием бинокулярного зрения связаны такие термины, как фузия (психофизиологический акт слияния монокулярных изображений), фузионные резервы, обеспечивающие бинокулярное слияние при определенной степени сведения (конвергенции) и разведения (дивергенции) зрительных осей (см. главу 3).

18.2. Патология глазодвигательного аппарата

Нарушения функции глазодвигательного аппарата могут проявляться в неправильном положении глаз (косоглазие), ограничении или отсутствии их движений (парезы, параличи глазодвигательных мышц и др.), нарушении фиксационной способности глаз (нистагм).

Косоглазие не только является косметическим недостатком, но и сопровождается выраженным расстройством монокулярных и бинокулярных зрительных функций, глубинного зрения, диплопией; оно затрудняет зрительную деятельность и ограничивает профессиональные возможности человека.

Нистагм часто приводит к слабовидению и инвалидности по зрению.

18.2.1. Косоглазие

Косоглазие (strabismus, heterotopia) - отклонение одного глаза от общей точки фиксации, сопровождающееся нарушением бинокулярного зрения. Это заболевание проявляется не только формированием косметического дефекта, но и нарушением как монокулярных, так и бинокулярных зрительных функций.

Косоглазие полиэтиологично. Причиной его развития могут быть аметропия (гиперметропия, миопия, астигматизм), анизометропия (разная рефракция двух глаз), неравномерность тонуса глазодвигательных мышц, нарушение их функции, заболевания, приводящие к слепоте или значительному снижению зрения одного глаза, врожденные пороки механизма бинокулярного зрения. Все эти факторы оказывают влияние на еще не сформировавшийся и недостаточно устойчивый механизм бинокулярной фиксации у детей и в случае воздействия не-

благоприятных факторов (инфекционные заболевания, стрессы, зрительное утомление) могут привести к возникновению косоглазия.

Различают два вида косоглазия - содружественное и несодружественное (например паралитическое), которые различаются как по патогенезу, так и по клинической картине.

От истинного косоглазия следует отличать скрытое и мнимое косоглазие.

18.2.1.1. Скрытое косоглазие, или гетерофория

Идеальное мышечное равновесие обоих глаз называют ортофорией (от греч. ortos - прямой, правильный). В этом случае даже при разобщении глаз (например, посредством прикрывания) сохраняются их симметричное положение и бинокулярное зрение.

У большинства же (70-80 %) здоровых людей наблюдается гетерофория (от греч. heteros - другой), или скрытое косоглазие. При гетерофории отсутствует идеальное равновесие функций глазодвигательных мышц, однако симметричное положение глаз сохраняется благодаря бинокулярному слиянию зрительных образов обоих глаз.

Гетерофория может быть обусловлена анатомическими или нервными факторами (особенностями строения глазницы, тонусом глазодвигательных мышц и др.). Диагностика гетерофории основана на исключении условий для бинокулярного зрения.

Простым способом определения гетерофории является проба с прикрыванием. Обследуемый фиксирует какой-либо предмет (конец карандаша, палец исследователя) двумя глазами, затем один его глаз врач прикрывает заслонкой. При наличии гетерофории прикрытый глаз отклонится в сторону действия превалирующей мышцы: кнутри (при

эзофории) или кнаружи (при экзофории). Бсли заслонку убрать, этот глаз из-за стремления к бинокулярному слиянию (исключенному при его прикрывании) совершит установочное движение к исходной позиции. В случае ортофории симметричное положение глаз сохранится.

При гетерофории лечения не требуется, лишь при ее значительной выраженности могут возникать бинокулярная декомпенсация и астенопия (боли в области глаз, надбровья). В этих случаях назначают облегчающие зрение очки (сферические или призматические).

18.2.1.2. Мнимое косоглазие

У большинства людей имеется небольшой угол (3-4°) между оптической осью, проходящей через центр роговицы и узловую точку глаза, и зрительной осью, идущей от центральной ямки желтого пятна к объекту фиксации, - так называемый угол гамма (γ). В отдельных случаях этот угол достигает 7-8 o и более. При обследовании таких пациентов световой рефлекс от офтальмоскопа на роговице смещен от ее центра к носу или к виску, в результате чего создается впечатление косоглазия. Правильный диагноз можно установить после определения бинокулярного зрения: при мнимом косоглазии бинокулярное зрение имеется и лечения не требуется.

18.2.1.3. Содружественное косоглазие

Содружественное косоглазие - патология, наблюдающаяся преимущественно в детском возрасте, наиболее часто развивающаяся форма глазодвигательных нарушений, которая, помимо отклонения глаза от общей точки фиксации, характеризуется нарушением бинокулярного зрения. Его выявляют у 1,5-3,5 % детей. При содружественном косо-

глазии функции глазодвигательных мышц сохраняются, при этом один глаз будет фиксирующим, другой - косящим.

В зависимости от направления отклонения косящего глаза различают сходящееся косоглазие (эзотропия), расходящееся (экзотропия), вертикальное косоглазие при отклонении одного глаза вверх или вниз (гипер- и гипотропия). При торзионных смещениях глаза (наклоне его вертикального меридиана в сторону носа или виска) говорят о циклотропии (экс- и инциклотропии). Возможно также комбинированное косоглазие.

Из всех видов содружественного косоглазия чаще всего наблюдаются сходящееся (70-80 % случаев) и расходящееся (15-20 %). Вертикальные и торзионные отклонения отмечаются, как правило, при паретическом и паралитическом косоглазии.

По характеру отклонения глаза различают одностороннее, т. е. монолатеральное, косоглазие, когда постоянно косит один глаз, и альтернирующее, при котором попеременно косит то один, то другой глаз.

В зависимости от степени участия аккомодации в возникновении косоглазия различают аккомодационное, частично-аккомодационное и неаккомодационное косоглазие. Импульс к аккомодации повышен при гиперметропии и снижен при миопии. В норме существует определенная связь между аккомодацией и конвергенцией и эти функции осуществляются одновременно. При косоглазии их соотношения нарушаются. Повышенный импульс к аккомодации при гиперметропии, наиболее часто наблюдающийся в детском возрасте, усиливает стимул к конвергенции и обусловливает высокую частоту сходящегося косоглазия.

Аккомодационное косоглазие (более 15 % больных) характеризуется тем, что девиация (отклонение глаза) устраняется при оптической коррекции аметропии, т. е. посто-

янном ношении очков. При этом достаточно часто восстанавливается бинокулярное зрение и больные не нуждаются в хирургическом лечении. В случае неаккомодационного косоглазия ношение очков не устраняет девиацию и лечение должно обязательно включать оперативное вмешательство. При частично-аккомодационном косоглазии ношение очков уменьшает, но полностью не устраняет девиацию.

Косоглазие может быть также постоянным или периодическим, когда наличие девиации чередуется с симметричным положением глаз.

Содружественное косоглазие сопровождается следующими сенсорными нарушениями: снижением остроты зрения, эксцентричной фиксацией, функциональной скотомой, диплопией, асимметричным бинокулярным зрением (анормальной корреспонденцией сетчаток), нарушением глубинного зрения.

Одним из наиболее часто возникающих сенсорных нарушений при монолатеральном косоглазии является амблиопия, т. е. функциональное снижение зрения глаза вследствие его бездействия, неупотребления.

По степени снижения остроты зрения, согласно классификации Э. С. Аветисова, выделяют амблиопию низкой степени - при остроте зрения косящего глаза 0,8-0,4, средней - 0,3-0,2, высокой - 0,1- 0,05, очень высокой -0,04 и ниже. Амблиопия высокой степени обычно сопровождается нарушением зрительной фиксации косящего глаза.

В норме фиксация является фовеальной (рис. 18.2). Нецентральная фиксация может быть парафовеальной, макулярной, парамакулярной, околодисковой (периферической), при этом изображение попадает на эксцентричный участок сетчатки.

По механизму возникновения амблиопия может быть дисбинокулярной, т. е. возникающей вследствие нарушения бинокулярного зрения,

Рис. 18.2. Топография зрительной фиксации по картине глазного дна на монобиноскопе.

что наблюдается при косоглазии, когда участие отклоненного глаза в зрительном акте значительно снижается, или рефракционной, которая является следствием несвоевременного назначения и непостоянного ношения очков при аметропиях, создающих нечеткое изображение на глазном дне.

При наличии некорригированной анизометропии возникает анизометропическая амблиопия. Рефракционная амблиопия может быть достаточно успешно преодолена посредством рациональной и постоянной оптической коррекции (очки, контактные линзы).

Помутнение глазных сред (врожденная катаракта, бельмо) может послужить причиной обскурационной амблиопии, трудно поддающейся лечению, для устранения которой требуется своевременное оперативное вмешательство (например, экстракция врожденной катаракты, пересадка роговицы).

Амблиопия может быть одно- и двусторонней.

При амблиопии снижается также цветовая и контрастная чувствительность.

При появлении косоглазия неминуемо возникает двоение, так как изображение в косящем глазу попадает на диспаратный участок сетчатки, однако благодаря адаптацион-

ным механизмам зрительно-нервная система приспосабливается к асимметричному положению глаз и возникает функциональное подавление, торможение, или «нейтрализация» [по терминологии Л. И. Сергиевского (1951)], изображения в косящем глазу. Клинически это выражается в возникновении функциональной скотомы. В отличие от истинных скотом, наблюдающихся при органических поражениях органа зрения, функциональная скотома при косоглазии существует лишь в том случае, если оба глаза открыты, и исчезает при монокулярной фиксации (когда другой глаз прикрыт). Функциональная скотома является формой сенсорной адаптации, избавляющий от двоения, которая наблюдается у большинства больных с содружественным косоглазием.

При монолатеральном косоглазии наличие постоянной скотомы в косящем глазу приводит к стойкому снижению зрения. В случае альтернирующего косоглазия скотома проявляется поочередно то в правом, то в левом глазу в зависимости от того, какой глаз в данный момент косит, поэтому амблиопия не развивается.

Одной из форм сенсорной адаптации при содружественном косоглазии является так называемая анормалъная корреспонденция сетчаток,

или асимметричное бинокулярное зрение. Диплопия при этом исчезает благодаря возникновению так называемой ложной макулы. Появляется новая функциональная связь между центральной ямкой фиксирующего глаза и участком сетчатки косящего глаза, на который попадает изображение вследствие девиации (отклонения глаза). Такая форма адаптации наблюдается чрезвычайно редко (у 5-7 % больных) и только при небольших углах косоглазия (микродевиациях), когда участок сетчатки отклоненного глаза органически и функционально мало отличается от центральной ямки. При больших углах косоглазия, когда изображение попадает на малочувствительный периферический участок сетчатки, исключается возможность его взаимодействия с высокофункциональной центральной ямкой фиксирующего глаза.

Методы исследования. Оценка состояния глазодвигательного аппарата предусматривает исследование как сенсорных (чувствительных), так и моторных (двигательных) функций.

Исследование сенсорных функций включает определение бинокулярного зрения и степени его устойчивости, глубинного (или стереоскопического) зрения, его остроты, наличия или отсутствия бифовеального слияния, фузионных резервов, функциональной скотомы подавления, характера диплопии.

При исследовании моторных функций определяют подвижность глазных яблок, величину девиации, степень нарушения функций различных глазодвигательных мышц.

При сборе анамнеза необходимо выяснить, в каком возрасте возникло косоглазие, предполагаемую причину его развития, наличие травм и перенесенных заболеваний, косил ли всегда один глаз или проявлялось попеременное отклонение обоих глаз, характер проводимого лечения, длительность ношения очков.

Исследование остроты зрения следует проводить в очках и без них, а также при двух открытых глазах, что особенно важно при нистагме.

Помимо общего офтальмологического исследования, применяют специальные методы.

Для определения характера косоглазия (монолатеральное, альтернирующее) следует провести фиксационную пробу: прикрывают ладонью фиксирующий (например, правый) глаз обследуемого и просят его смотреть на конец карандаша или ручки офтальмоскопа. Когда отклоненный глаз (левый) начинает фиксировать объект, убирают ладонь и оставляют открытым правый глаз. Если левый глаз продолжает фиксировать конец карандаша, то, значит, у обследуемого альтернирующее косоглазие, если же при двух открытых глазах левый глаз снова косит, то косоглазие монолатеральное.

Вид косоглазия и величину девиации (угол косоглазия) определяют по направлению отклонения глаза (сходящееся, расходящееся, вертикальное).

Угол косоглазия можно определить по методу Гиршберга. Врач, приложив ручной офтальмоскоп к своему глазу, просит больного смотреть в отверстие офтальмоскопа и наблюдает за положением световых рефлексов на роговицах обоих глаз пациента с расстояния 35-40 см. О величине угла судят по смещению рефлекса от центра роговицы косящего глаза по отношению к зрачковому краю радужки и лимбу (рис. 18.3) при средней ширине зрачка 3-3,5 мм. При сходящемся косоглазии ориентируются по наружному краю зрачка, а при расходящемся - по внутреннему.

Подвижность глаз определяют при перемещении объекта фиксации, за которым следит глазами пациент, в восьми направлениях взора: вправо, влево, вверх, вниз,

Рис. 18.3. Положение светового рефлекса на роговице косящего глаза при определении угла косоглазия по методу Гиршберга.

вверх - вправо,вверх - влево,

вниз - вправо, вниз - влево. При содружественном косоглазии глаза совершают движения в достаточно полном объеме. При паралитическом косоглазии целесообразно применение специальных методов - коордиметрии и спровоцированной диплопии (см. раздел 18.2.1.4), позволяющих выявить пораженную мышцу.

При вертикальной девиации проводят определение угла косоглазия в боковых позициях - при аддукции и абдукции. Увеличение угла вертикального косоглазия при аддукции свидетельствует о поражении косых мышц, при абдукции - прямых мышц вертикального действия.

При наличии амблиопии оценивают состояние зрительной фиксации на монобиноскопе (рис. 18.4) - одном из основных приборов, применяемых для исследования и лечения косоглазия. Прибор сконструирован по типу стационарного офтальмоскопа Гульштранда, позволяющего при фиксации головы ребенка осуществлять исследование глазного дна, определять состояние зрительной фиксации, проводить лечебные процедуры. Ребенок смотрит на конец фиксационного стержня («иглы») монобиноскопа, тень от которого проецируется (на глазном дне) на участок фиксации (см. рис. 18.2).

Методы исследования бинокулярных функций при косоглазии основаны на принципе разделения полей зрения правого и левого глаза (гаплоскопия), что позволяет выявить участие (или неучастие) косящего глаза в бинокулярном зрении. Гаплоскопия может быть механической, цветовой, растровой и др.

Один из основных гаплоскопических приборов - синоптофор (рис. 18.5). Разделение полей зрения правого и левого глаза в этом приборе осуществляется механически, с использованием двух (отдельных для каждого глаза) подвижных оптических трубок, с помощью которых

Рис. 18.4. Определение зрительной фиксации и упражнения на монобиноскопе.

Рис. 18.5. Занятия на синоптофоре.

обследуемому предъявляют парные тест-объекты.

Тест-объекты синоптофора (рис. 18.6) могут перемещаться (по горизонтали, вертикали, торзионно, т. е. по часовой стрелке и против нее) и устанавливаться в соответствии с углом косоглазия. Они различаются контрольными для каждого глаза элементами, что и позволяет при совмещении парных (правого и левого) рисунков судить о наличии или отсутствии бинокулярного слияния, т. е. фузии, а при его отсутствии - о наличии функциональной скотомы (когда исчезает деталь или весь рисунок перед косящим глазом). При наличии слияния определяют фузионные резервы путем сведения или разведения тестобъектов (оптических трубок синоптофора) до момента двоения тест-

объекта. При сведении трубок синоптофора определяют положительные фузионные резервы (резервы конвергенции), при разведении - отрицательные фузионные резервы (резервы дивергенции).

Наиболее значительны положительные фузионные резервы. При исследовании на синоптофоре с тестом № 2 («кошки») у здоровых лиц они составляют 16 ± 8 o , отрицательные - 5 ± 2 o , вертикальные - 2- 4 призменные диоптрии (1-2 o). Торзионные резервы составляют: инциклорезервы (при наклоне вертикального меридиана рисунка к носу) - 14 ± 2 o , эксциклорезервы (при наклоне к виску) - 12 ± 2 o .

Фузионные резервы зависят от условий исследования (при использовании разных методов - синоптофора или призмы), размеров тест-

Рис. 18.6. Пример совмещения двух изображений на синоптофоре.

Рис. 18.7. Четырехточечный цветотест для исследования бинокулярного зрения и красно-зеленые очки фильтры.

объектов, их ориентации (вертикальная или горизонтальная) и других факторов, которые учитывают при определении тактики лечения.

Для исследования бинокулярного зрения в естественных и близких к ним условиях применяют методы, основанные на цветовом, поляроидном или растровом разделении полей зрения. С этой целью используют, например, красные и зеленые светофильтры (красный - перед одним, зеленый - перед другим глазом), поляроидные фильтры с вертикально и горизонтально ориентированными осями, растровые фильтры взаимно перпендикулярной ориентации для обоих глаз. Использование этих методов позволяет ответить на вопрос о характере зре-

ния у больного: бинокулярное, одновременное (диплопия) или монокулярное.

Четырехточечный цветотест Белостоцкого-Фридмана имеет два зеленых (или синих) кружка, один красный и один белый кружок (рис. 18.7). Обследуемый смотрит через красно-зеленые очки: перед правым глазом стоит красный фильтр, перед левым - зеленый (или синий). Средний белый круг, видимый через красный и зеленый фильтры очков, будет восприниматься как зеленый или красный в зависимости от преобладания правого или левого глаза (рис. 18.8). При монокулярном зрении правого глаза (рис. 18.8, а) через красное стекло обследуемый видит только красные кружки (их два), при монокулярном зрении левого глаза (рис. 18.8, б) - только зеленые (их три). При одновременном зрении (рис. 18.8, в) он видит пять кружков: два красных и три зеленых, при бинокулярном (рис. 18.8, г, д)-четыре кружка: два красных и два зеленых.

При использовании поляроидных или растровых фильтров (так называемых очков Баголини), так же как и в цветовом приборе, имеются общий объект для слияния и объекты, видимые только правым или только левым глазом.

Методы исследования бинокулярного зрения различаются степенью разобщающего («диссоциирующего») действия: оно более выражено в цветовом приборе, менее - в поляроидном тесте и в растровых оч-

Рис. 18.8. Видимое пациентом расположение кружков четырехточечного цветотеста. Объяснение в тексте.

ках, так как условия для зрения в них ближе к естественным.

При пользовании растровыми очками видно все окружающее пространство, как в естественных условиях (в отличие от зрения в цветовых красно-зеленых очках), а разобщающее действие растров проявляется лишь тонкими, взаимно перпендикулярными световыми полосами, проходящими через общий круглый источник света - объект фиксации. Поэтому при исследовании разными методами у одного и того же больного можно выявить одновременное зрение на четырехточечном тесте и бинокулярное - в растровых очках Баголини. Это необходимо помнить при оценке бинокулярного статуса и для определения лечебной тактики.

Существуют различные глубинноглазомерные приборы и стереоскопы, позволяющие определить остроту и пороги (в градусах или линейных величинах) глубинного и стереоскопического зрения. При этом обследуемый должен правильно оценить или расположить предъявляемые тест-объекты, смещенные по глубине. По степени ошибки будет определена острота стереозрения в угловых или линейных величинах.

Расходящееся содружественное косоглазие - более благоприятная форма глазодвигательных нарушений, чем сходящееся, оно реже сопровождается амблиопией. Нарушения бинокулярного зрения проявляются при расходящемся косоглазии в более легкой форме, в основном выявляется недостаточность конвергенции.

Лечение. Конечная цель лечения содружественного косоглазия - восстановление бинокулярного зрения, поскольку только при этом условии восстанавливаются зрительные функции и устраняется асимметрия в положении глаз. С этой целью используют систему комплексного лечения содружественного косоглазия, которая включает:

Оптическую коррекцию аметропии (очки, контактные линзы);

Плеоптическое лечение (плеоптика - лечение амблиопии);

Хирургическое лечение;

Ортоптодиплоптическое лечение, направленное на восстановление бинокулярных функций (пред- и послеоперационное) и глубинного зрения.

Оптическая коррекция. Оптическая коррекция аметропии способствует восстановлению остроты зрения и нормализации соотношения аккомодации и конвергенции. Это приводит к уменьшению или устранению угла косоглазия и в конечном итоге способствует восстановлению бинокулярного зрения (при аккомодационном косоглазии) или созданию условий для этого. Коррекция аметропии показана при любых формах косоглазия. Очки следует назначать для постоянного ношения под систематическим контролем остроты зрения (1 раз в 2-3 мес).

Плеоптика. Плеоптика - система методов лечения амблиопии.

Одним из традиционных и основных методов плеоптического лечения является прямая окклюзия - выключение здорового (фиксирующего) глаза 1 . Она создает условия для фиксации предметов косящим глазом, включая его в активную зрительную деятельность и в значительном числе случаев, особенно при своевременном назначении, приводит к восстановлению остроты зрения косящего глаза. С этой целью используют специальные пластиковые окклюдоры, прикрепляемые к очковой оправе, или самодельные мягкие шторки (занавески), а также полупрозрачные (с разной степенью плотности) окклюдоры. По мере повышения остроты зрения амблиопичного глаза степень прозрачности окклюдора перед ведущим глазом

1 Окклюзия как метод лечения амблиопии была предложена в 1751 г. французским исследователем Бюффоном.

можно увеличивать. Полупрозрачная окклюзия способствует также развитию бинокулярной координации обоих глаз. Режим окклюзии определяет врач. Окклюзию назначают на весь день (окклюдор снимают на ночь), на несколько часов в день или через день в зависимости от степени снижения остроты зрения.

Следует помнить, что прямая окклюзия может привести к нарушению функции и сокращению бинокулярных корковых нейронов, в результате чего ухудшается бинокулярное зрение, поэтому используют тактику постепенного перехода к другим методам лечения или использованию пенализации. Принцип пенализации (от франц. penalite - штраф, взыскание) заключается в создании у больного искусственной анизометропии с помощью специальных временных очков. Поводом для разработки метода явилось наблюдение французских исследователей (Pfandi, Pouliquen и Quera), которые отметили, что амблиопия отсутствует при анизометропии на фоне миопии слабой степени одного глаза и эмметропии или слабой гиперметропии другого глаза.

Пенализационные очки «штрафуют» лучше видящий глаз. Их подбирают индивидуально, при этом искусственно создают анизометропию, например путем гиперкоррекции (на 3,0 дптр) лучшего глаза плюсовыми линзами, иногда в сочетании с его атропинизацией. В результате этого ведущий глаз становится миопическим и ухудшается его зрение вдаль, амблиопичный же глаз подключается к активной работе путем полной оптической коррекции. При этом в отличие от прямой окклюзии сохраняется возможность зрения двумя глазами, поэтому пенализация более физиологична, но она эффективнее в более раннем возрасте - 3-5 лет.

В комплексе с окклюзией или отдельно применяют методы световой стимуляции амблиопичного глаза:

метод локального «слепящего» раздражения центральной ямки сетчатки светом, разработанный Э. С. Аветисовым, метод последовательных зрительных образов по Кюпперсу, засветы парацентрального участка сетчатки (участка эксцентричной фиксации) по методу Бангертера. Эти методы обеспечивают растормаживающий эффект и снимают феномен подавления с центральной зоны сетчатки.

Метод выбирают в зависимости от возраста ребенка, особенностей его поведения и интеллекта, состояния зрительной фиксации.

Для лечения по методу Аветисова, которое можно сочетать с прямой окклюзией, используют различные источники яркости: световод, лазерный засвет. Продолжительность процедуры несколько минут, поэтому она может быть применена у детей младшего возраста.

Метод последовательных образов Кюпперса основан на их возбуждении путем засвета глазного дна при одновременном затемнении центральной ямки круглым тест-объектом. Последовательные зрительные образы после засвета наблюдаются на белом экране, и их образование стимулируют прерывистым освещением экрана. При использовании этого метода предъявляют более высокие требования к интеллекту пациента, чем при лечении по методу Аветисова.

Лечение указанными методами, а также с применением общего засвета, засвета через красный фильтр и других их разновидностей осуществляют на монобиноскопе. Прибор позволяет при фиксации головы ребенка проводить исследование глазного дна, зрительной фиксации, плеоптическое и диплоптическое лечение под контролем офтальмоскопии.

Все перечисленные выше методы необходимо использовать в сочетании с активными бытовыми зрительными тренировками (рисова-

ние, игра с мелкими деталями типа «Мозаика», «Лего» и др.).

Лазерное излучение используют при плеоптическом лечении в виде отраженного лазерного света, так называемых спеклов, путем наблюдения лазерной «зернистости», оказывающей стимулирующее действие на сетчатку. Используют отечественные приборы «ЛАР» и «МАКДЕЛ»: первый - дистанционный, второй - приставляют к глазам. Лазерные спеклы можно применять и на монобиноскопе.

Перечисленные методы дают возможность оказывать воздействие в основном на световую и яркостную чувствительность глаза. Комплексное же воздействие на различные виды чувствительности при амблиопии успешно осуществляют с помощью динамических цветовых и частотноконтрастных стимулов различной яркости, формы и смыслового содержания. Это реализовано в специальных отечественных компьютерных программах «ЕУЕ» (упражнения «Тир», «Погоня», «Крестики», «Паучок» и др.). Упражнения интересны детям, требуют их активного участия. Стимулирующие тесты динамичны и легко меняются. Принцип динамической смены цветовых и контрастно-частотных стимулов использован и в методе, основанном на феномене интерференции поляризованного света А. Е. Вакуриной. Комплексное воздействие на различные виды зрительной чувствительности существенно повышает эффективность плеоптического лечения.

Хирургическое лечение. При косоглазии цель операции - восстановить симметричное или близкое к нему положение глаз путем изменения мышечного баланса. Усиливают слабые или ослабляют сильные мышцы.

К операциям, ослабляющим действие мышц, относятся рецессия (перенесение места прикрепления мышцы кзади от анатомического), частичная миотомия (нанесение по-

перечных краевых насечек по обе стороны мышцы), удлинение мышцы путем различных пластических манипуляций), тенотомия (пересечение сухожилия мышцы). В настоящее время тенотомию практически не применяют, так как она может привести к резкому ограничению подвижности глазного яблока и исключить возможность восстановления зрительных функций.

С целью усиления действия мышцы производят резекцию участка мышцы (длиной 4-8 мм в зависимости от степени дозирования вмешательства и величины угла косоглазия) или образование мышечной складки либо складки сухожилия мышцы - теноррафию, а также перемещение места прикрепления мышцы кпереди (антепозиция). При сходящемся косоглазии ослабляют внутреннюю прямую мышцу и усиливают наружную прямую мышцу, при расходящемся выполняют обратные действия.

Основные принципы выполнения оперативного вмешательства при косоглазии таковы.

Необходимо отказаться от форсированных вмешательств, соблюдать принцип предварительного дозирования операции в соответствии с существующими расчетными схемами. Операцию выполняют поэтапно: вначале на одном глазу, затем (через 3-6 мес) на другом.

Равномерно распределяют дозированное вмешательство на несколько глазных мышц (ослабление сильных, усиление слабых мышц).

Обязательно сохраняют связь мышцы с глазным яблоком при операции на ней.

Восстановление правильного положения глаз создает условия для восстановления бинокулярного зрения, что может обеспечивать самокоррекцию остаточного угла косоглазия в послеоперационном пе-

риоде. При больших углах косоглазия (30 o и более) операции делают в 2 (или 3) этапа в зависимости от исходной величины угла косоглазия.

Высокий косметический и лечебный эффект отмечается при использовании схемы дозирования эффекта операции, разработанной Э. С. Аветисовым и X. М. Махкамовой (1966). Эта схема предусматривает рецессию внутренней прямой мышцы на 4 мм при девиации по Гиршбергу менее 10 o . Рецессия большей степени нередко приводит к ограничению подвижности глазного яблока. При углах косоглазия 10 o , 15 o , 20 o , 25 o эту операцию выполняют в сочетании с резекцией (усилением) антагониста - наружной прямой мышцы того же глаза - в дозировке 4-5; 6; 7-8 и 9 мм соответственно. При сохранении остаточной девиации второй этап операции выполняют на другом глазу по аналогичной схеме дозирования не ранее чем через 4- 6 мес. Симметричное положение глаз достигается у 85 % больных и более.

Аналогичную схему дозирования используют при операциях по поводу расходящегося косоглазия, но при этом ослабляют наружную мышцу (делают ее рецессию), а усиливают внутреннюю прямую.

Показанием к выполнению операции служит отсутствие лечебного эффекта при постоянном (в течение 1,5-2 лет) ношении очков (если они показаны).

Обычно операцию производят в возрасте 4-6 лет, что зависит от времени начала заболевания. При врожденных формах заболевания и больших углах отклонения глаза операцию делают раньше - в 2-3 года. Целесообразно устранение косоглазия в дошкольном возрасте, что способствует повышению эффективности дальнейшего функционального лечения и оказывает благоприятное влияние на восстановление зрительных функций.

Ортоптическое и диплоптическое лечение. Ортоптика и диплоптика - система методов восстановления бинокулярного зрения, точнее бинокулярных функций, элементами которых являются бифовеальное слияние, фузионные резервы, относительная аккомодация, стереоэффект, глубинное восприятие пространства и другие функции. При этом ортоптика - это лечение на приборах с полным искусственным разделением полей зрения обоих глаз: каждому глазу предъявляют отдельный объект и устанавливают его под углом косоглазия; диплоптика - это лечение в естественных и близких к ним условиях.

Бинокулярные упражнения проводятся после достижения максимально возможной остроты зрения косящего глаза, однако допустимой является острота зрения 0,3-0,4.

Ортоптическиеупражнения

обычно выполняют на приборах с механическим разделением полей зрения (механическая гаплоскопия), важнейшим из которых является синоптофор (см. рис. 18.5; аналоги - амблиофор, ортоамблиофор, синоптископ и др.). Парные тестобъекты для обоих глаз подвижны и могут быть расположены под любым углом косоглазия. В этом большое преимущество синоптофора перед приборами с неподвижными рисунками. Синоптофор имеет диагностическое и лечебное назначение. С диагностической целью (определение функциональной скотомы, бифовеального слияния) используют тест-объекты для совмещения («цыпленок и яйцо») или мелкие (2,5° или 5°) тест-объекты для слияния («кошка с хвостом» и «кошка с ушами»). Для определения фузионных резервов и с лечебной целью применяют тест-объекты для слияния больших размеров (7,5°, 10° идр.).

Цель упражнений - устранение функциональной скотомы и развитие бифовеального слияния (сен-

сорной фузии). Для этого используют два вида упражнений: альтернирующую (попеременную) или одновременную световую стимуляцию («мигания»). Тест-объекты необходимо устанавливать под объективным углом косоглазия, тогда они проецируются на центральные ямки сетчаток. Прибор позволяет изменять частоту миганий от 2 до 8 в 1 с, которую последовательно увеличивают в ходе выполнения упражнений.

Третий вид упражнений - развитие фузионных резервов: горизонтальных (положительных и отрицательных, т. е. конвергенции и дивергенции), вертикальных, циклорезервов (круговых). Вначале используют крупные, а затем более мелкие тесты для слияния. Упражнения назначают как в пред-, так и в послеоперационном периоде и проводят курсами по 15-20 сеансов с интервалом в 2-3 мес.

Ортоптические приборы при всей их привлекательности и необходимости (на начальных этапах лечения) ограничивают возможность восстановлениябинокулярных

функций в естественных условиях и обеспечивают излечение лишь у 25-30 % больных, что обусловлено искусственными условиями зрения на этих приборах. В связи с этим после достижения симметричного положения глаз следует проводить лечение по восстановлению бинокулярных функций в «свободном пространстве», без механического разделения полей зрения.

Один из таких методов - метод бинокулярных последовательных зрительных образов [Кащенко Т. П., 1966]. Он позволяет восстановить бифовеальную фузию, устранить функциональную скотому и восстановить бинокулярное зрение. Метод можно применять в сочетании с упражнениями на синоптофоре при симметричном или близком к нему положении глаз в послеоперационном периоде. Последователь-

ные образы (в виде круга с правой горизонтальной меткой для правого глаза и с левой меткой для левого) вызывают, как и при использовании метода Кюпперса (при лечении амблиопии), на монобиноскопе, но засвечивают оба глаза, причем последовательно: сначала один, а затем другой. Затем вызванные в каждом глазу образы пациент наблюдает на белом экране при прерывистом освещении и совмещает их в единый образ. Через 1-2 мин процедуру засвета повторяют еще 2 раза. Применение метода бинокулярных последовательных образов повышает эффективность лечения и способствует восстановлению бинокулярного зрения.

Недостатки методов ортоптики послужили поводом к разработке другой системы лечения - диплоптики [Аветисов Э. С, 1977]. Основной принцип диплоптики - устранить феномен подавления зрительного образа косящего глаза в естественных условиях путем возбуждения диплопии и выработки фузионного рефлекса бификсации.

Все диплоптические методы применяют при двух открытых глазах, наличии бифовеальной фузии, симметричном или близком к нему положении глаз, достигнутом с помощью операции или оптической коррекции. Имеется ряд диплоптических способов, при применении которых для возбуждения диплопии используют различные диссоциирующие («провокационные») приемы.

Восстановление механизма бификсации по методу, разработанному Э. С. Аветисовым и Т. П. Кащенко (1976), осуществляют с помощью призмы, ритмически предъявляемой перед одним глазом на 2-3 с с интервалом 1-2 с. Призма отклоняет изображение объекта фиксации на парацентральные участки сетчатки, что вызывает двоение, которое является стимулом к бинокулярному слиянию - так называемому фузи-

Рис. 18.9. Набор призм для диплоптического лечения Диплоптик-П и тест-объекты к нему.

онному рефлексу (бификсации). Силу призмы последовательно увеличивают с 2,0-4,0 до 10,0-12,0 дптр. Разработана серия приборов «Диплоптик», в которую входит набор призм (рис. 18.9). Существуют приборы, позволяющие менять силу призмы и направление ее основания то к носу, то к виску в автоматическом режиме.

Способ разобщения аккомодации и конвергенции (способ «диссоциации») «обучает» бинокулярному слиянию в условиях возрастающей нагрузки отрицательными линзами от 0 до -7,0 дптр с интервалом в 0,5 дптр, а затем в условиях последовательной релаксации положительными сферическими линзами от 0 до +5,0 дптр. Больной преодолевает возбуждаемое при этом двоение. Метод способствует развитию не только бификсации и фузии, но и бинокулярной (относительной) аккомодации, без которой бинокулярное зрение невозможно. С помощью отечественного прибора «Форбис» можно тренировать бинокулярное зрение и относительную аккомодацию в условиях цветового, растрового и поляроидного разделения полей зрения.

Любое диплоптическое упражнение выполняют в течение 15-25 мин, на курс назначают 15-20 занятий. При выполнении упражнений осуществ-

ляют контроль за бинокулярным зрением с разных рабочих расстояний - 33 см, 1 м, 5 м, в очках и без очков. Контролируют также величину переносимых отрицательных и положительных сферических линз. При использовании метода «диссоциации» на цветотесте для близи с 33 см (на приборе «Форбис») отрицательные запасы в норме составляют в среднем +5,0 дптр, положительные - до 7,0 дптр; у больных на начальных этапах лечения они существенно меньше и могут составлять примерно +1,0 и -1,0 дптр.

Диплоптический метод использования цветовых (красных, зеленых и др.) светофильтров возрастающей плотности реализуют с помощью специальных линеек - светофильтров [Кащенко Т. П., Тарасцова М. М., 1980]. Плотность (или пропускная способность) светофильтров различается в среднем на 5 %. Самый слабый фильтр - № 1 (5 % плотности, или высокая пропускная способность - до 95 %), самый плотный - № 15 (75 % плотности) (рис. 18.10).

Перед одним глазом пациента (при двух открытых глазах, как и при выполнении любого диплоптического упражнения) ставят линейку со светофильтрами и просят его

Рис. 18.10. Набор цветных светофильтров возрастающей плотности и различной длины волны для диплоптического лечения Диплоптик-СФ.

фиксировать круглый светящийся тест-объект диаметром 1-2 см, находящийся на расстоянии 1-2 м. После возникновения двоения, спровоцированного цветным фильтром, пациент должен соединить (слить) немного отличающиеся по цвету изображения объекта фиксации (например, белый и розовый). Последовательно увеличивают плотность цветного фильтра и на каждом из них тренируют бинокулярное слияние.

Впервые линейку с красными светофильтрами использовал итальянский ученый В. Bagolini (1966) с диагностической целью. В отечественной страбологии красные светофильтры применяют не только с лечебной целью, но и для определения устойчивости достигнутого бинокулярного зрения. Критерием оценки устойчивости является плотность (измеряют в процентах) того светофильтра, при котором бинокулярное зрение нарушается и возникает двоение.

С лечебной целью используют набор нейтральных (светло-серых), зеленых (синих), красных и желтых светофильтров. Если при предъявлении красных фильтров (которые также применяют как диагностические) слияние осуществляется с трудом, лечение начинают с менее диссоциирующих (разобщающих) нейтральных фильтров. После достижения бинокулярного слияния на нейтральных фильтрах (всех степеней плотности) последовательно предъявляют зеленые или синие, а затем красные и желтые светофильтры. Этот способ вошел в клиническую практику как хроматическая диплоптика.

Для бинокулярных тренировок в системе диплоптического лечения используют компьютерные программы («EYE, Контур»), основанные на цветовом разделении полей зрения. Упражнения увлекательные, игрового характера, обеспечивают активное участие пациента.

Рис. 18.11. Упражнения на бинариметре.

В диплоптике используют также метод бинариметрии (Л. И. Могилев, И. Э. Рабичев, Т. П. Кащенко, В. В. Соловьева и др.), заключающийся в предъявлении двух парных тест-объектов (рис. 18.11) на бинариметре в свободном пространстве. В процессе выполнения упражнений добиваются слияния тест-объектов, уменьшая расстояние между ними, приближая и отодвигая их по оси прибора (поиск зоны комфорта).

При этом возникает третий, средний бинокулярный образ - мнимый, причем по глубине он располагается ближе или дальше кольца прибора и может совпадать с его плоскостью при перемещении рамки с тест-объектами. Эти упражнения развивают бинокулярное, глубинное восприятие и тренируют относительную аккомодацию.

Существуют и другие методики выполнения диплоптических упражнений. Диплопию вызывают, создавая искусственную анизейконию путем увеличения размеров одного из монокулярных изображений с помощью объектива с переменным увеличением. В естественных условиях переносится разница в величине изображений между правым и левым глазом до 5 %, искусственно вызванная анизейкония у здоровых людей может быть переносима при разнице в величине изображений до

60-70 %, а у больных с косоглазием лишь до 15-20 %.

Оригинален диплоптический метод, основанный на фазовом (во времени) предъявлении стимулирующих тестов то для правого, то для левого глаза.

Существует мнение, что зрительная информация передается поочередно - то по правому, то по левому зрительному каналу. Отмечается также определенная частота («фазовость») такой передачи, нарушаемая при различных патологических состояниях, например при косоглазии. На этом основан способ фазовой гаплоскопии с применением жидкокристаллических очков

(ЖКО). При прохождении электрического импульса через пластины таких очков в определенном частотно-фазовом режиме изменяется их прозрачность: одно стекло будет прозрачным, другое в этот момент - непрозрачным. Высокую частоту смены таких временных фаз в ЖКО (более 80 Гц) обследуемый не ощущает. В этом преимущество ЖКО по сравнению с другими способами фазового предъявления тест-объектов.

Такие очки используют в двух вариантах. В первом больной должен выполнять увлекательные глубинные упражнения «попадание в цель» на экране компьютера, на котором с такой же частотой предъявляются рисунки, диспаратно расположенные для обоих глаз, что и создает эффект глубины. В процессе выполнения упражнений уровень их сложности повышается (сближение парных рисунков, уменьшение порогов глубины), что способствует повышению остроты глубинного зрения.

Во втором варианте применяют ЖКО для ношения с автономной системой электропитания. В этих очках наряду с попеременно предъявляемыми для каждого глаза фазами включается бинокулярная фаза, когда оба глаза смотрят через про-

зрачные пластины очков (И. Э. Рабичев, Т. П. Кащенко, С. И. Рычкова, П. Шамон), в результате чего тренируемый постепенно приближается к естественным условиям зрительного восприятия.

Диплоптические упражнения по сравнению с ортоптическими повышают эффективность лечения и способствуют более значительному восстановлению бинокулярного зрения - с 25-30 % (после ортоптики) до 60-65 %, а при раннем применении и более.

Глубинное зрение и стереозрение тренируют с помощью различных глубинно-глазомерных устройств и стереоскопов. Упражнения с использованием глубинных приборов (прибор для забрасывания шариков, трехпалочковый прибор Говарда- Долмана, прибор Литинского и др.) основаны на предъявлении реальной глубинной разности. При проведении исследования больной не должен видеть концы стержней трехпалочкового прибора (подвижного среднего и двух боковых, стоящих на одной поперечной линии). После смещения (исследователем) среднего стержня больной должен расположить его с помощью подвижной спицы в одном раду с боковыми. По степени расхождения стержней определяют остроту глубинного зрения (в градусах или линейных величинах). В норме острота глубинного зрения при исследовании с 1-2 м составляет до 1-2 см. Глубинное зрение хорошо тренируется в реальной обстановке, например в играх с мячом (волейбол, теннис, баскетбол и др.).

Исследование с использованием стереоскопов основано на предъявлении стереопарных тест-объектов с диспарацией (смещением) разной степени. Они служат для измерения остроты стереозрения, которая зависит от размеров тест-объектов, возраста и степени тренированности обследуемого. У здоровых лиц она составляет 10-30» (угловых секунд).

При диплоптическом лечении определенная роль отводится призматическим очкам. Призматические линзы, как известно, преломляют световой луч, смещая изображение объекта фиксации на сетчатке в сторону основания призмы. При наличии небольших или остаточных углов косоглазия в послеоперационном периоде назначают призматические очки для ношения наряду с диплоптическим лечением. По мере уменьшения угла косоглазия силу призматических линз уменьшают, а затем очки отменяют.

Призмы применяют также для развития фузионных резервов в «свободном пространстве». При этом удобно использовать бипризму типа Ландольта-Гершеля, конструкция которой позволяет плавно увеличивать (или уменьшать) ее призматическое действие путем вращения диска.

Бипризма отечественного производства (ОКП - офтальмокомпенсатор призменный) может быть фиксирована в специальном устройстве или очковой оправе. Смена направления основания призмы к виску способствует развитию положительных фузионных резервов, к носу - отрицательных.

18.2.1.4. Несодружественное косоглазие

Несодружественное косоглазие в отличие от содружественного вызвано нарушением функции глазодвигательных мышц (парез или паралич). Причины могут быть разные: черепно-мозговые или орбитальные травмы, опухоли, врожденная, воспалительная или эндокринная патология.

Паралитическое косоглазие может быть обусловлено параличом одной или нескольких глазодвигательных мышц. Оно характеризуется прежде всего ограничением или отсуствием подвижности косящего

глаза в сторону действия парализованной мышцы. При взгляде в эту сторону возникает двоение, или диплопия. Если при содружественном косоглазии от двоения избавляет функциональная скотома, то при паралитическом косоглазии возникает другой адаптационный механизм: больной поворачивает голову в сторону действия пораженной мышцы, что компенсирует ее функциональную недостаточность. Таким образом, возникает третий характерный для паралитического косоглазия симптом - вынужденный поворот головы. Так, при параличе отводящего нерва (нарушение функции наружной прямой мышцы), например правого глаза, голова будет повернута вправо. Вынужденный поворот головы и наклон к правому или левому плечу при циклотропии (смещении глаза вправо или влево от вертикального меридиана) называют тортиколлисом. Глазной тортиколлис следует дифференцировать от нейрогенного, ортопедического (кривошея), лабиринтного (при отогенной патологии). Вынужденный поворот головы позволяет пассивно переводить изображение объекта фиксации на центральную ямку сетчатки, что избавляет от двоения и обеспечивает бинокулярное зрение, хотя и не вполне совершенное.

Признаком паралитического косоглазия является также неравенство первичного угла косоглазия (косящего глаза) вторичному углу отклонения (здорового глаза). Если попросить больного фиксировать точку (например, смотреть в центр офтальмоскопа) косящим глазом, то здоровый глаз отклонится на значительно больший угол.

При паралитическом косоглазии необходимо определить пораженные глазодвигательные мышцы. У детей дошкольного возраста об этом судят по степени подвижности глаз в разные стороны (определение поля взора). В более старшем возрасте

используют специальные методы - коордиметрию и спровоцированную диплопию.

Упрощенный способ определения поля взора заключается в следующем. Больной сидит напротив врача на расстоянии 50-60 см, врач фиксирует левой рукой голову обследуемого и предлагает ему поочередно следить каждым глазом (второй глаз в это время прикрыт) за перемещением предмета (карандаш, ручной офтальмоскоп и т. д.) в 8 направлениях. О недостаточности мышцы судят по ограничению подвижности глаза в ту или иную сторону. При этом используют специальные таблицы. С помощью этого метода можно выявить только выраженные ограничения подвижности глаз.

При видимом отклонении одного глаза по вертикали для выявления паретичной мышцы можно использовать простой способ аддукции - абдукции. Больному предлагают смотреть на какой-либо предмет, перемещают его вправо и влево и наблюдают, увеличивается или уменьшается вертикальная девиация при крайних отведениях взора. Определения пораженной мышцы этим способом осуществляют также по специальным таблицам.

Коордиметрия по Тессу основана на разделении полей зрения правого и левого глаза с помощью красного и зеленого фильтров.

Для проведения исследования используют коордиметрический набор, в который входят разграфленный экран, красный и зеленый фонарики, красно-зеленые очки. Исследование выполняют в полутемной комнате, на одной из стен которой укреплен экран, разделенный на маленькие квадраты. Сторона каждого квадрата равна трем угловым градусам. В центральной части экрана выделено девять меток, размещенных в виде квадрата, положение которых соответствует изолированному физиологическому действию глазодвигательных мышц.

Больной в красно-зеленых очках сидит на расстоянии 1 м от экрана. Для исследования правого глаза в руку ему дают красный фонарик (красное стекло перед правым глазом). В руках у исследователя зеленый фонарик, луч света от которого он поочередно направляет на все девять точек и предлагает больному совместить с зеленым световым пятном световое пятно от красного фонарика. При попытке совместить оба световых пятна обследуемый обычно ошибается на какую-то величину. Положение фиксируемого зеленого и подравниваемого красного пятна врач регистрирует на схеме (лист миллиметровой бумаги), представляющей собой уменьшенную копию экрана. В момент исследования голова больного должна быть неподвижна.

На основании результатов коордиметрического исследования одного глаза нельзя судить о состоянии глазодвигательного аппарата, необходимо сопоставить результаты коордиметрии обоих глаз.

Поле взора на схеме, составленной по результатам исследования, бывает укорочено в направлении действия ослабленной мышцы, одновременно наблюдается компенсаторное увеличение поля взора на здоровом глазу в сторону действия синергиста пораженной мышцы косящего глаза.

Метод исследования глазодвигательного аппарата в условиях спровоцированной диплопии по Хаабу-Ланкастеру основан на оценке положения в пространстве изображений, принадлежащих фиксирующему и отклоненному глазу. Диплопию вызывают, приставляя к косящему глазу красное стекло, что позволяет одновременно определить, какое из двойных изображений принадлежит правому и какое - левому глазу.

Схема исследования с девятью точками аналогична применяемой при коордиметрии, но она одна (а не две).

Исследование проводят в полутемной комнате. На расстоянии 1-2 м от больного находится источник света. Голова больного должна быть неподвижна.

Как и при коордиметрии, регистрируют расстояние между красным и белым изображениями в девяти позициях взора. При трактовке результатов необходимо пользоваться правилом, согласно которому расстояние между двойными изображениями увеличивается при взгляде в сторону действия пораженной мышцы. Если при коордиметрии регистрируют поле взора (уменьшается при парезах), то при «спровоцированной диплопии» оценивают расстояние между двойными изображениями, которое при парезах увеличивается.

Хирургическое лечение - основной вид лечения несодружественных форм косоглазия.

Нередко показаны пластические операции. Так, при параличе отводящего нерва и отсутствии движений глазного яблока кнаружи может быть произведено подшивание к наружной прямой мышце волокон (в 1 / 3 - 1 / 2 ширины мышцы) верхней и нижней прямых мышц.

Сложнее хирургические подходы к косым мышцам, особенно к верхней косой, что обусловлено сложностью ее анатомического хода. Предложены различные виды вмешательств на этих, а также прямых мышцах вертикального действия (верхняя и нижняя прямые). Последние также могут быть рецессированы (ослаблены) или резецированы (усилены).

При выполнении операции на глазодвигательных мышцах необходимо обращаться с ними осторожно, не нарушая естественного направления мышечной плоскости, особенно если это клинически не оправдано. Специальные операции, осуществляемые при сложных видах косоглазия, могут изменять не только силу, но и направление действия

мышц, однако перед их выполнением необходимо провести тщательное диагностическое исследование.

Одним из методов лечения паралитического косоглазия является призматическая коррекция. Чаще она помогает при лечении недавно возникших парезов и параличей глазодвигательных мышц у взрослых, например после черепно-мозговых травм. Призматические очки совмещают двойные изображения, предотвращая развитие у больного диплопии и вынужденного поворота головы. Возможно также медикаментозное и физиотерапевтическое лечение.

18.2.2. Нистагм

Нистагм - тяжелая форма глазодвигательных нарушений, проявляющаяся в самопроизвольных колебательных движениях глаз и сопровождающаяся значительным снижением остроты зрения - слабовидением. Развитие нистагма может быть обусловлено воздействием центральных или местных факторов.

Нистагм обычно возникает при врожденном или раноприобретенном снижении зрения в связи с различными заболеваниями глаз (помутнения оптических сред, атрофия зрительного нерва, альбинизм, дистрофия сетчатки и др.), в результате чего нарушается механизм зрительной фиксации.

При некоторых разновидностях нистагма сохраняется достаточно высокая острота зрения, в таких случаях причина его развития состоит в нарушениях регуляции глазодвигательного аппарата.

В зависимости от направления колебательных движений различают горизонтальный (наиболее часто наблюдаемый), вертикальный, диагональный и вращательный нистагм, по характеру движений - маятникообразный (при равной ам-

плитуде колебательных движений), толчкообразный (при разной амплитуде колебаний: медленной фазы - в одну сторону и быстрой - в другую) смешанный (проявляются то маятникообразные, то толчкообразные движения). Толчкообразный нистагм называют левоили правосторонним в зависимости от направления его быстрой фазы. При толчкообразном нистагме отмечается вынужденный поворот головы в сторону быстрой фазы. Этим поворотом больной компенсирует слабость глазодвигательных мышц, и амплитуда нистагма уменьшается, поэтому, если голова повернута вправо, слабыми считаются «правые» мышцы: наружная прямая правого глаза и внутренняя прямая левого глаза. Такой нистагм называют правосторонним.

Нистагм может быть крупнокалиберный (с амплитудой колебательных движений глаз более 15 o), среднекалиберный (с амплитудой 15-5 o), мелкокалиберный (с амплитудой менее 5 o).

Для определения амплитуды, частоты и характера колебательных нистагмоидных движений используют объективный метод исследования - нистагмографию. При отсутствии нистагмографа характер амплитуды нистагма можно определить по степени смещения светового рефлекса от офтальмоскопа на роговице. Если световой рефлекс при колебательных движениях глаз перемещается от центра роговицы до середины расстояния между центром и краем зрачка, говорят о мелкокалиберном, мелкоразмашистом нистагме, если выходит за эти пределы - крупнокалиберном. Если движения обоих глаз неодинаковы, такой нистагм называют диссоциированным. Он наблюдается крайне редко.

При обследовании больных с нистагмом важны результаты электрофизиологических исследований (электроретинограмма, зрительные

вызванные потенциалы и др.), позволяющие уточнить диагноз, определить степень органических поражений, наличие амблиопии и определить тактику лечения.

При нистагме остроту зрения каждого глаза исследуют в очках и без очков, при прямом и вынужденном положении головы. В этом положении амплитуда нистагма обычно уменьшается и острота зрения становится выше. Этот критерий используют для решения вопроса о целесообразности выполнения оперативного вмешательства на глазодвигательных мышцах. Важно определить остроту зрения при двух открытых глазах (в очках и без очков), так как при бинокулярной фиксации амплитуда нистагма также уменьшается и острота зрения становится выше.

Система мер по повышению зрительных функций при нистагме включает тщательно подобранную оптическую коррекцию для дали и близи. Необходим также подбор средств специальной коррекции (лупы, очки-гиперокуляры), использование проекционных увеличителей. При альбинизме, дистрофии сетчатки, частичной атрофии зрительных нервов целесообразен подбор защитных и повышающих остроту зрения цветных светофильтров (нейтральных, желтых, оранжевых, коричневых) той плотности, которая обеспечивает наибольшую остроту зрения.

При нистагме нарушается также аккомодационная способность и отмечается относительная амблиопия, поэтому назначают плеоптическое лечение и упражнения по тренировке аккомодации. Полезны засветы через красный фильтр (на монобиноскопе), избирательно стимулирующие центральную зону сетчатки, стимуляция контрастно-частотными и цветовыми тест-объектами (прибор «Иллюзион», компьютерные упражнения по программам «Зебра», «Паучок», «Крестики»,

«EYE»). Эти упражнения можно выполнять последовательно для каждого глаза и при двух открытых глазах. Весьма полезны бинокулярные упражнения и диплоптическое лечение (способ «диссоциации», бинариметрия), также способствующие уменьшению амплитуды нистагма и повышению остроты зрения.

Медикаментозную терапию при нистагме используют для улучшения питания тканей глаза, сетчатки (сосудорасширяющие препараты, комплекс витаминов).

Хирургическое лечение нистагма проводят для уменьшения колебательных движений глаз. При толчкообразном нистагме, когда диагностируют вынужденный поворот головы с повышением остроты зрения и уменьшением амплитуды нистагма в этой позиции («зона покоя»), цель операции - перенести «зону покоя» в срединное положение. Для

этого ослабляют более сильные мышцы (на стороне медленной фазы) и усиливают более слабые мышцы (на стороне быстрой фазы). В результате выпрямляется положение головы, уменьшается нистагм, повышается острота зрения.

Вопросы для самоконтроля

1.Какие глазодвигательные мышцы и черепные нервы обеспечивают движения глаз?

2.Почему возникает функциональная скотома?

3.Назовите этапы комплексного лечения содружественного косоглазия.

4.Какие методы плеоптического лечения используют при амблиопии?

5.Что такое диплоптика? Перечислите ее методы.

6.Можно ли помочь больному с нистагмом?

Глазное яблоко приводится в движение поперечнополосатыми мышцами: прямыми (верхней, нижней, медиальной и латеральной) и косыми (верхней, нижней), обеспечивающими движение глазного яблока во всех направлениях.

Все мышцы, за исключением нижней косой, начинаются в глубине глазницы вокруг зрительного канала (canalis opticus) короткими сухожилиями от надкостницы глазницы и фиброзного влагалища зрительного нерва, образуя общее сухожильное кольцо (цинново)—anulus tendineus communis (Zinn). Четыре прямые мышцы прикрепляются к склере впереди экватора. Верхняя и нижняя косые мышцы прикрепляются к склере позади экватора.

а — вид сверху (удалена верхняя стенка глазницы); б —вид сбоку (удалена латеральная стенка глазницы); 1 — верхняя стенка глазницы — paries superior; 2—медиальная стенка глазницы — paries medialis;

3 — блок — trochlea;

4 — нижняя стенка глазницы — paries inferior;

5 — латеральная стенка глазницы — paries lateralis;

6 — глазное яблоко — bulbus oculi;

7 — зрительный нерв — п. opticus;

8 — общее сухожильное кольцо (цинново) — anulus tendineus communis (Zinn). От него берут начало все мышцы глазного яблока (за исключением нижней косой мышцы — m. obliquus inferior) и мышца, поднимающая верхнее веко — т. levator palpebrae superior;

9 — верхняя прямая мышца — т. rectus superior;

10 — нижняя прямая мышца — т. rectus inferior;

11 — медиальная прямая мышца — in. rectus medialis;

12 — латеральная прямая мышца — m. rectus lateralis;

13 — верхняя косая мышца — т. obliquus superior. Вблизи блоковой ямки (fovea trochlearis) мышца переходит в сухожилие, перекидывается через блок, поворачивает кзади и кнаружи и прикрепляется к склере;

14 — нижняя косая мышца — m. obliquus inferior — начинается от crista lacrimalis на медиальной стенке глазницы и прикрепляется к склере на латеральной поверхности.

От сухожильного кольца — anulus tendineus начинается мышца, которая не принимает участия в движении глазного яблока — мышца, поднимающая верхнее веко;

15-—мышца, поднимающая верхнее веко — m. levator palpebrae superior. Прикрепляется к верхнему краю хряща — tarsus — верхнего века. Функция понятна из названия

У человека выделяется рудиментарная глазничная мышца — m. orbitalis— гладкая, закрывает заднюю часть нижней глазничной щели — fissura orbitalis inferior. Мышца передними волокнами вплетается в склеру у заднего полюса глазного яблока. При нарушении иннервации этой мышцы (nn. symphatici) глазное яблоко может выдаваться вперед или западать в полость глазницы. На схемах мышца не обозначена.

а — вид спереди; б — вид сзади;

в — схемы направления движения зрачка при сокращении мышц; 1 — верхняя прямая мышца — m. rectus superior;

2— верхняя косая мышца — т. obliquus superior;

3— медиальная прямая мышца — т. rectus medialis;

4 — нижняя прямая мышца — т. rectus inferior;

5 — нижняя косая мышца — т. obliquus inferior;

6 — латеральная прямая мышца — m. rectus lateralis;

7 — зрительный нерв — п. opticus

Прямые мышцы вращают глазное яблоко вокруг двух осей: поперечной (m. rectus superior 1 et inferior 4 — зрачок направляется кверху или книзу) и вертикальной (m. rectus lateralis 6 et medialis 3 — зрачок направляется вбок или в медиальную сторону).

Косые мышцы вращают глазное яблоко вокруг сагиттальной оси. М. obliquus superior 2 направляют зрачок вниз и латерально 2, m. obliquus inferior 5 вверх и латерально.

Важная роль глазного яблока в процессе зрения определяется прежде всего тем, что для непрерывного получения зрительных световых раздражений необходимо движение изображения на сетчатке.

Глазное яблоко может вращаться вокруг любой оси, проходящей через центр его вращения, по типу шаровидного сустава. Центр вращения глазного яблока находится на 1,3 мм позади его центра. Движения обоих глазных яблок содружественны, т. е. зрительные оси обоих глаз всегда направлены на один и тот же предмет. При движении одного глазного яблока в какую-либо сторону в ту же сторону одновременно движется другой глаз.

При смыкании век обоих глаз оба глаза поворачиваются кверху, что объясняется существованием физиологической связи между иннервацией круговых мышц глаза и нижних косых — феномен Белла (Bell).

Когда все мышцы находятся в равномерном напряжении, зрачок направлен прямо вперед. Зрительные оси обоих глазных яблок параллельны друг другу.

1 — передний полюс — polus anterior; соответствует наиболее выпуклой точке роговицы;

2 — задний полюс — polus posterior; находится на 2 мм латеральнее от выхода зрительного нерва;

3 — экватор — equator. Плоскость экватора перпендикулярна наружной оси глаза; делит глазное яблоко на переднюю и заднюю половины;

4 — наружная (оптическая) ось глазного яблока — axis bulbi ехternus, соединяет оба полюса глаза;

5 — зрительная ось — axis opticus — идет от рассматриваемого предмета к месту наилучшего видения, т. е. соответствует направлению светового луча, падающего на центральную ямку; 6—центральная ямка — fovea centralis — место наиболее ясного видения

При рассмотрении близких предметов происходит сведение зрительных осей обоих глаз, называемое конвергенцией глаз. Конвергенция осуществляется сокращением медиальных прямых мышц — mm. recti mediales. При рассмотрении предметов, находящихся вдалеке, происходит разведение зрительных осей, называемое дивергенцией. Дивергенция осуществляется сокращением обеих латеральных мышц —mm. recti laterales.

7-06-2012, 14:35

Описание

Мышечный аппарат глаза представлен 6 мышцами : четырьмя прямыми -верхней, нижней, медиальной, латеральной и двумя косыми - верхней и нижней. Местом исхода всех перечисленных экстраокулярных мышц, кроме нижней косой, является вершина орбиты, где мышцы, сливаясь, образуют плотное сухожильное кольцо, расположенное вокруг зрительного отверстия и медиальной части верхней глазничной щели. Все прямые мышцы в виде плоских широких лент направляются кпереди, к месту своего прикрепления. Постепенно дивергируя, все четыре прямые мышцы глаза образуют так называемую мышечную воронку. Понятие о мышечной воронке играет важную роль в топографии глазницы и при дифференциальной диагностике патологических процессов в орбите, особенно опухолевых, дающих разную симптоматику и разный прогноз в зависимости от локализации внутри воронки или вне ее (рисунок 2).

Рисунок 2.
Расположение наружных мышц глаза в орбите. Мышечная воронка. Между дивергирующими мышцами по оси мышечной воронки проходит зрительный нерв. 1 - сухожильное кольцо Цинна (annulus tendineus communis Zinnii); 2 - m. obliquus superior; 3 - место его прохождения через блок; 4 - m. rectus superior; 5 - m. obliquus inferior; 6 - m. rectus lateralis; 7 - m. rectus inferior; 8 - m. rectus medialis (no Beninghoff, 1957) .

Прободая тенонову капсулу на уровне экватора глаза, мышцы прикрепляются к глазному яблоку широкими сухожилиями, вплетающимися в склеру.

Верхняя косая мышца начинается, так же как и прямые мышцы глаза, в глубине орбиты, но вне циннова кольца, в непосредственном соседстве с ним, направляется вдоль верхнемедиальной стенки орбиты, до spina trochlearis. Мышца имеет вид круглого шнура. Проходя через блок она резко сужается, по выходе из блока снова утолщается и поворачивает кзади кнаружи. Пройдя между глазным яблоком и верхней прямой мышцей, прикрепляется позади экватора в верхненаружном квадранте.

Нижняя косая мышца берет начало отдельно от всех остальных мышц, от внутренней костной стенки орбиты, идет книзу кнаружи, опоясывая глазное яблоко между нижней стенкой орбиты и нижней прямой мышцей, поднимается кверху и прикрепляется к склере позади экватора в том же наружном квадранте, что и верхняя.

По своей функции мышцы глазного яблока подразделяются на три пары антагонистов, действующих в прямо противоположных направлениях:

- медиальная и латеральная прямые - поворачивают глаз кнутри и кнаружи;

- верхняя и нижняя прямая - поднимают и опускают глазное яблоко;

- косые мышцы - сообщают глазу вращательные движения.

Однако чистыми антагонистами являются лишь наружняя и внутренняя прямые мышцы , они вращают глаз в горизонтальной плоскости вне зависимости от исходного положения глазного яблока. Остальные же мышцы действуют как чистые антагонисты только в положении абдукции, когда ось орбиты и анатомическая ось глаза совпадают. При прямом направлении взгляда, когда анатомическая ось орбиты и ось глаза находятся под углом 25 - 27 градусов, действия мышц являются более сложными:

- нижняя прямая мышца опускает глазное яблоко книзу, приводит его, наклоняет вертикальный его меридиан кнаружи.

- верхняя прямая мышца поднимает глазное яблоко кверху, приводит его, наклоняет вертикальную ось глаза кнутри.

- нижняя косая мышца поднимает глаз кверху, отводит его, наклоняет вертикальный меридиан кнаружи.

- верхняя косая мышца опускает глазное яблоко книзу, отводит его, наклоняет вертикальную ось глаза кнутри.

Кроме того, тонус прямых мышц глаза имеет тенденцию оттягивать глазное яблоко кзади, а двух косых - кпереди.

Таким образом, вся мышечная система глаза находится в очень точно отрегулированном равновесии .

Веки верхние и нижние защищают глазное яблоко спереди и за счет своих мигательных движений, способствующих равномерному распространению слезы, предохраняют его от высыхания.

Веки регулируют количество проникающего в глаза света . Рефлекторное смыкание век возникает в ответ на воздействие механических, зрительных или
звуковых раздражителей. Рефлекторное движение глазе кверху (феномен Белла) при смыкании век обеспечивает защиту роговицы от попадания инородных тел и высыхания роговицы во время сна.

Края век образуют глазную щель (rima palpebrarum). (Рисунок 3).

Рисунок 3 . Строение век.
Сагиттальный срез через оба века, конъюнктивальный мешок и передний отдел глазного яблока.
1 - супрeорбитальный край лобной кости; 2 - орбитальный жир; 3 - levator musculus palpebrae superior; пучки его сухожильных волокон проникают слева через круговую мышцу век в кожу; 4 - сухожилие m. rectus superior. Глазное яблоко: 5- склера; 6 - конъюнктива верхнего свода - верхняя переходная складка; 7 - роговица; 8 - конъюнктива нижнего свода; 9 - сухожилие m. rectus inferior; 10 - сечение нижней косой мышцы; 11 - нижний орбитальный край верхней челюстной кости; 12 - орбитальный жир; 13 - тарзоорбитальная фасция - septum orbitale; 14 - хрящ нижнего века; 15 - конъюнктива хряща нижнего века; 16 - конъюнктива хряща верхнего века; 17 - хрящ верхнего века; 18 - m. orbicularis palpebrarum (по М. Л. Краснову, 1952) .

Граница верхнего века проходит по брови, нижнего века по нижнему краю глазницы. Оба века соединяются у углов глазной щели внутренней и наружной связками (l.palpebrale mediale et laterale). Ширина и форма глазной щели варьирует в норме : длина ее по горизонтали у взрослого человека составляет 30 мм, высота колеблется от 10 до 14 мм, край нижнего века не доходит до лимба 0,5-1 мм, край верхнего века прикрывает лимб на 2 мм. Наружный край глазной щели острый, внутренний притуплен в виде подковообразного изгиба. Последний ограничивает пространство называемое слезным озером, в котором находятся слезное мясцо (caruncula lacrimalis) - небольшой бугорок розового цвета, имеющий строение кожи с сальными и потовыми железами, и полулунная складка (plica semilunaris) утолщенной слизистой оболочки, которые являются рудиментами третьего века. Свободные края век толщиной около 2 мм плотно прилегают друг к другу. В них различают переднее, заднее ребра и интермаргинальное пространство. На переднем, более закругленном ребре, растут ресницы (75-150 шт.), в луковицы которых открываются выводные протоки сальных желез Цейса. Между ресницами расположены видоизмененные потовые железы Молля . В интермаргинальное пространство открываются выводные протоки мейбомиевых желез, жировой секрет которых смазывает края век, способствуя их герметизации. У внутреннего угла глаза, т.е. у слезного озера, интермаргинальное пространство суживается и переходит в слезные сосочки (papilli lacrimales). На вершине каждого из них располагается слезная точка - отверстие, ведущее в слезный каналец. Диаметр слезной точки при открытых веках 0,25 - 0,5 мм. Веки состоят из 2-х пластинок: наружная пластинка образована кожей с мышцами, внутренняя - хрящом (tarsus) и плотно сращенной с ним конъюнктивой хряща.

Кожа век очень тонкая , нежная, бедная жировой клетчаткой, рыхло соединена с подлежащими тканями. На кожной поверхности верхнего века имеется глубокая орбито-пальпебральная верхняя, на нижнем - орбитопальпебральная нижняя складки. Первая расположена чуть ниже верхнего орбитального края и обусловлена тонусом прикрепляющейся к задней поверхности кожи передней ножки леватора. Тонкость и легкая смещаемость кожи век относительно подлежащих тканей являются хорошими условиями для выполнения пластических операций. Но в связи с этим кожа легко отекает при местном воспалении, венозном застое, ряде общих заболеваний, кровоизлияниях и подкожной эмфиземе.

Подвижность век обеспечивается двумя группами мышц-антагонистов: круговой мышцей глаза и поднимателями ве к (m. levator palpebrae superior и m. tarsalis inferior).

Круговая мышца века - м.orbicularis oculi, s. palpebrarum, в которой выделяют пальпебральную, орбитальную и слезную части. Круговая мышца участвует в опускании верхнего века и закрытии глазной щели. Пальпебральная часть расположена в пределах самих век и не заходит за их края. Мышечные волокна, как на верхнем, так и на нижнем веках вплетаются в плотную медиальную связку. Описав полукруг вдоль каждого века они темпорально прикрепляются к наружной спайке (латеральной связке) век. Таким образом, образуются два полулуния на каждом веке . При сокращении пальпебральной части происходит мигание и легкое смыкание век, как во сне. Мышечные волокна, идущие вдоль края век между корнями ресниц и выводными протоками мейбомиевых желез, составляют ресничную мышцу, или мышцу Риолана (m.ciliaris Riolani), сокращение которой способствует выделению секрета мейбомиевых желез, а также плотному прилеганию краев век к глазному яблоку. Орбитальная часть: волокна начинаются от медиальной связки и от лобного отрезка верхней челюсти и проходят по периферии пальпебральной части орбикулярной мышцы. Мышца имеет вид широкого пласта заходящего за края орбиты и соединяется с мимической мускулатурой лица. Описав полный круг, мышца прикрепляется возле места своего начала. При сокращении этой мышцы, совместно с сокращением пальпебральной части, осуществляется плотное зажмуривание век.

Слезная часть круговой мышцы глаза (мышца Горнера) представлена глубокой порцией мышечных волокон, которые начинаются несколько кзади от заднего гребня слезной кости (crista lacrimalis posterior os lacrimale). Затем они проходят позади слезного мешка и вплетаются в пальпебральные волокна круговой мышцы, идущие от переднего слезного гребня. В результате слезный мешок оказывается охваченным мышечной петлей, которая при сокращении и расслаблении во время мигательных движений то расширяет, то суживает просвет слезного мешка. Всасыванию и продвижению слезной жидкости по слезным путям способствует и сокращение тех пучков слезной мышцы, которые охватывают слезные канальцы.

В поднимании верхнего века и раскрытии глазной щели участвуют поперечно-полосатая - m.levator palpebrae superior и гладкомышечные - верхняя и нижняя тарзальные или мышцы Мюллера. На нижнем веке мышцы аналогичной леватору нет. Функция поднятия нижнего века осуществляется слабо выраженной мышцей (m. tarsalis inferior) и нижней прямой мышцей глаза, дающей добавочное сухожилие в толщу нижнего века.

M. levator palpebrae superior - начинается в глубине орбиты, где у вершины отходит от сухожильного кольца (annulus tendineus communis) вместе с прямыми мышцами глазного яблока, направляется под крышей орбиты кпереди и на уровне супраорбитального края переходит в широкое сухожилие, которые расходятся веерообразно и делятся на три отдела. Передняя часть сухожилия в виде тонких пучков волокон проходит тарзоорбитальную фасцию и орбикулярную мышцу, расходится веерообразно и сливается с субэпителиальным слоем кожного покрова век. Задняя порция проникает в верхний свод конъюнктивы и здесь прикрепляется. Средняя - самая мощная (мышца Мюллера) прикрепляется вдоль верхнего края хряща по всему его продолжению. По своей структуре мышца Мюллера сетевидная, только часть ее мышечных пучков подходит перпендикулярно к краю хряща, проникая между волокнами леватора и сопровождая их местами до верхнего края хряща. При этом сухожилие леватора расслаивается гладкими мышечными волокнами. Другая часть волокон подходит в косом направлении. Третья формирует хорошо выраженный поперечный пучок , вплетаясь в апоневроз леватора. Такой контакт с апоневрозом леватора обеспечивает не только поднятие, но и препятствует сморщиванию века. Боковые ответвления сухожилия леватора фиксируют его к периорбите. Сокращения мышцы приводит к подтягиванию кверху одновременно кожи, тарзальной пластинки и свода конъюнктивы. Основной мышцей является мышца, поднимающая верхнее веко, вспомогательной лежащая под ней мышца Мюллера, а при взгляде вверх - лобная и верхняя прямая. Мышца Мюллера иннервируется симпатическим нервом, а остальные две порции -Ш парой (глазодвигательным нервом).

При сокращении пальпебральной части круговой мышцы глаза осуществляется мигание и легкое сжимание век . Электромиографически установлено, что при произвольных мигательных движениях мышца, поднимающая верхнее веко и круговая мышца действуют реципрокно : активность одной сопровождается пассивностью другой. Если верхнее веко медленно опускается, то не только снижается активность поднимающей его мышцы, но остается пассивным и антагонист (круговая мышца). Однако общий механизм смыкания век сложней вследствие сочетанной связи орбикулярной мышцы с мимической мускулатурой с одной стороны и эпидермисом кожи лица с другой. В результате этих связей веки при смыкании перемещаются не только вверх и вниз, но и в горизонтальном направлении - кнутри, особенно нижнее, что играет важную роль в продвижении слезной жидкости. При смыкании век глазная щель укорачивается на 2 мм. Кроме того, в механизме слезоотведения ведущая роль принадлежит глубокой части пальпебральной порции круговой мышцы.

Связки век

Медиальная и латеральная связки служат основным аппаратом, прикрепляющим к костной стенке орбиты различные элементы века: края самих век, круговую мышцу глаза, края хрящей и тарзоорбитальную фасцию. Медиальная связка имеет две ножки : переднюю и заднюю. Первая в виде мощного коллагенового тяжа, образованного сухожилием орбикулярной мышцы и сливающегося с ним коллагеновыми волокнами медиальных отделов хрящей и орбикулярной фасции, проходит в горизонтальном направлении впереди слезного мешка от внутреннего угла век к переднему слезному гребешку (верхней челюсти). Тяж хорошо прощупывается и становится виден при оттягивании конъюнктивы книзу, вследствие напряжения внутренней связки. Задняя его ножка ответвляется несколько отступя от угла век в виде сухожилия, огибает слезный мешок снаружи и сзади и прикрепляется к заднему слезному гребешку слезной кости. Таким образом, медиальная связка охватывает слезный мешок как спереди, так и сзади. Латеральная связка век, по сравнению с внутренней, развита слабо и является лишь швом с сухожильной перемычкой между наружными частями круговой мышцы верхнего и нижнего века. Связку подкрепляют вплетающиеся в нее коллагеновые волокна наружных концов хрящей и тарзоорбитальная фасция. Она проходит так же горизонтально от наружного угла век к костному бугорку скуловой кости - tuberculum orbitae, где она прикрепляется отступя на 2-3 мм от края орбиты.

Хрящ века

Представляет собой пластину полулунной формы с заостренными краями (при проведении инцизии в интермаргинальном пространстве легко расслаивается на 2 пластины). Образующая эту пластину коллагеновая ткань с примесью эластических волокон отличается особой хрящевой плотностью. Поэтому название хрящ укоренилось, хотя гистологически никаких элементов хряща здесь нет . Заостренные концы хрящей прочно связаны между собой переплетом коллагеновых волокон. Коллагеновые волокна, идущие от краев хрящей к медиальной и латеральной связкам век, фиксируют хрящ к костным стенкам орбиты. Плотность хряща обуславливает его защитную “скелетную” функцию. Хрящ повторяет выпуклую форму глазного яблока . Длинна хряща верхнего века 2 см., высота 1 см, толщина 1мм, хрящ нижнего века меньше, его высота - 5 мм. Передняя поверхность граничит с рыхлой соединительной тканью, задняя тесно связана с конъюнктивой.

В толще хряща заложены модифицированные сальные железы - Мейбомиевы (на верхнем веке- 27-30, на нижнем - около 20). Они имеют альвеолярное строение и выделяют жировой секрет. Очень короткие протоки альвеол впадают в длинный общий выводной проток. Железы параллельны друг другу и перпендикулярны свободному краю век, занимают всю высоту хряща. Отверстия протоков открываются впереди заднего ребра века в виде пор. Секрет мейбомиевых желез служит жировой смазкой, предохраняет края век от мацерации, препятствует переливанию слезы через край век, способствуя ее правильному оттоку.

Таким образом, хрящ является как бы непосредственным продолжением тарзоорбитальной фасции , прочно связанной с орбитальным краем. Эта перегородка (septum orbitae) полностью отделяет содержание орбиты от тканей век, препятствуя распространению патологических процессов вглубь. Задняя поверхность век покрыта конъюнктивой, которая плотно сращена с хрящом, а за его пределами образует мобильные своды. Глубокий верхний и более мелкий и легко доступный осмотру нижний свод.

Конъюнктива тонкая, прозрачная слизистая ткань , которая в виде тонкой оболочки покрывает всю заднюю поверхность век (tunica conjunctiva palpebrarum), образует глубокие своды (fornix conjunctivae superior et inferior) и переходит на глазное яблоко (tunica conjunctiva bulbi) оканчиваясь у лимба. В конъюнктиве век в свою очередь выделяют тарзальную часть - плотно сращенную с подлежащей тканью, и подвижную - орбитальную, в виде переходной к сводам складки.

Конъюнктива хряща покрыта двухслойным цилиндрическим эпителием и содержит у края век бокаловидные клетки, а дистального конца хряща - крипты Генле. И те, и другие секретируют муцин. Под эпителием находится ретикулярная ткань плотно спаянная с хрящом. У свободного края век слизистая гладкая, но уже в 2-3 мм от него появляется шероховатость, обусловленная наличием здесь сосочков.

Конъюнктива переходной складки гладкая и покрыта 5-6 слойным переходным эпителием также с большим количеством бокаловидных клеток секретирующих муцин. Под эпителием расположена рыхлая соединительная ткань, состоящая из эластических волокон и содержащая плазматические клетки и лимфоциты. Конъюнктива здесь легко смещается и образует складки, облегчающие свободные движения глазного яблока.

На границе между тарзальной и орбитальной частями в конъюнктиве находятся дополнительные слезные желез ы, аналогичные строению и функции главной слезной железы: Вольфринга - 3 у верхнего края верхнего хряща и еще одна ниже нижнего хряща, а в области сводов - Краузе. Число последних достигает 6-8 на нижнем веке и от 15 до 40 на верхнем. Кровообращение век осуществляется двумя системами: системой внутренней сонной артерии (ветви а.ophthalmica). a.supraorbitalis, a.lacrimalis и системой наружной сонной артерии (анастомозов a.facialis и a.maxillaris , a.temporales superfacialis).

С назальной стороны в толщу обоих век из глубины орбиты проникают медиальные пальпебральные артерии века - верхняя и нижняя (a. palpebralis mediales superiores et inferiores) - конечные ветви a.supraorbitalis. C латеральной стороны от a.lacrimalis отходят a.palpebralis lateralis. В рыхлой соединительнотканной прослойке между кожно-мышечной и тарзально-конъюнктивальной пластинами века эти медиальные и латеральные ветви пальпебральных артерий направляются навстречу друг другу, сливаются и образуют поперечно расположенные артериальные дуги: верхнюю и нижнюю- (arcus tarseus sup. et inf., или агсш subtarsalis sup.et inf.). Обе артериальные дуги проходят вдоль краев века, верхняя отстоит на 1-2 мм от края века, нижняя на 1-3 мм. На уровне верхнего края хряща образуется вторая дуга периферическая или arcus tarseus sup. На нижнем веке она не всегда выражена. Между периферическими и субтарзальными дугами существуют вертикальные анастомозы с артериями лица. В васкуляризации нижнего века и окружающей его зоны принимают участие и ветви подглазничной артерии , отходящей от верхнечелюстной артерии (из системы наружной сонной артерии). Эти дуги питают все ткани век. Вены века идут соответственно артериям, образуя две сети: поверхностную и глубокую. Анастомозов значительно больше - с венами лица и венами орбиты. Т.к. клапаны в венах отсутствуют, кровь оттекает как в венозную сеть лица, так и орбиты и через v.ophthalmica. superior, изливающую кровь в пещеристый синус (следовательно, велика вероятность проникновения инфекции в полость черепа). На своем пути в орбиту вены, отводящие кровь из области век, пронизывают и орбитальную мышцу. Ее спазм при заболеваниях глазного яблока (скрофулезе) может привести к отеку век.

Важнейшие анастомозы венозной сети век - со слезной веной (v.lacrimalis) и c поверхностной височной (v.temporalis superfacialis). Особое значение имеют анастомозы с v.angularis, проходящей от внутреннего угла глазной щели и анастомозирующей с v.ophthalmica superior.

Лимфатическая система - сеть широко разветвленных лимфатических сосудов и в глубоких, и в субтарзальных слоях. Обе сети широко анастомозируют друг с другом. Регионарный лимфоузел отводящий лимфу от верхнего века -предушный, из области нижнего века - подчелюстной.

Иннервация век

В двигательной иннервации век принимает участие III и VII пары черепно-мозговых нервов.

Круговая мышца глаза - ветвью лицевого нерва (VII пара), его двигательные волокна обеспечивают смыкание век. Лицевой нерв имеет смешанный состав : включает двигательные, чувствительные и секреторные волокна, которые принадлежат промежуточному нерву, тесно связанному с лицевым нервом. Двигательное ядро нерва расположено в нижнем отделе варолиева моста на дне IV желудочка, огибая локализованное сверху ядро отводящего нерва, образует колено (genu n. facialis) и выходит на основание мозга в мостомозжечковом углу. Затем через внутреннее слуховое отверстие входит в canalis facialis, в котором делает два поворота с образование коленца и узла коленца (geniculum et ganglium gen.). От узла коленца берет начало большой каменистый нерв (n. petrosus major) несущий секреторные волокна к слезной железе, отходящие от особого слезного ядра, а сам лицевой нерв выходит из канала через foramen stilomastoideum, отдавая на этом уровне ветви n. auricularis posterior et r. digastricus. Затем одиночным стволом он пронизывает околоушную железу и делится на верхнюю и нижнюю ветви, которые отдают множественные ветви, в том числе и к круговой мышце глаза. Мышца, поднимающая верхнее веко, иннервируется глазодвигательным нервом (Ш пара), только средняя ее часть, т.е. мышца Мюллера - симпатическим нервом.

Ядрo глазодвигательного нерва расположено на дне сильвиевого водопровода. Глазодвигательный нерв выходит из черепа через верхнюю глазничную щель, присоединив симпатические (из сплетения внутренней сонной артерии) и чувствительные волокна (из n.ophthalmicus), проходит через пещеристый синус. В глазнице в пределах мышечной воронки он делится на верхнюю и нижнюю ветви. Верхняя, более тонкая ветвь, проходя между верхней прямой мышцами и мышцей поднимающей верхнее веко, иннервирует их.

Чувствительные нервы к верхнему веку и коже лба приходят от глазничного нерва (n.ophthalmicus) 1-ой ветви тройничного нерва, который выходит через верхнюю глазничную щель и делится на три основные ветви: n.lacrimalis, n.frontalis et n.nasociliaris. В иннервации кожи век основное участие принимает n.frontalis , в медиальной области верхнего века под кожу выходят его ветви n.supraorbitalis et n.supratrochlearis. Глазничный нерв снабжает чувствительной иннервацией кожу лба, передней поверхности волосистой части головы, верхнего века, внутреннего угла глаза, спинки носа, само глазное яблоко, слизистые оболочки верхней части носовой полости, лобной и решетчатой пазух, мозговые оболочки. Нижнее веко чувствительную иннервацию получает от n.infraorbitalis , отходящей от 2-ой ветви тройничного нерва (n.maxillaris). Верхнечелюстной нерв выходит из полости черепа через круглое отверстие и иннервирует твердую мозговую оболочку, кожу, хрящ и конъюнктиву нижнего века (кроме самого внутреннего и наружного углов глазной щели), нижнюю половину слезного мешка и верхнюю половину носослезного протока, кожу передней части височной области, верхней части щеки, крыльев носа, а также верхнюю губу, верхнюю челюсть (и находящиеся на ней зубы), слизистые оболочки задней части полости носа и гайморовой пазухи.

Статья из книги:

  • 2. Развитие головного мозга - мозговые пузыри и их производные. Формирова¬ние желудочков головного мозга.
  • 1. Мышцы и фасции плеча: их анатомия, топография, функции, кровоснабжение и иннервация.
  • 1.Стопа как целая. Своды стопы. Пассивные и активные затяжки сводов стопы. Понятие о плоскостопии. Подометрический индекс.
  • 3.Брыжеечная часть тонкой кишки (тощая и подвздошная), строение стенки, кровоснабжение, иннервация, регионарные лимфатические сосуды.
  • 4.Мозговое кровообращение: строение и функции сосудов мозга. Понятие о гэматоэнцифалическом барьере.
  • 1.Мимические мышцы. Их особенности. Кровоснабжение, иннервация, лимфоотток.
  • 2.Толстая кишка: отделы, топография, строение, отношение к брюшине, кровоснабжение, иннервация, регионарные лимфатические узлы.
  • 3.Центральные органы иммунной системы: костный мозг, вилочковая железа: развитие, строение, топография, функция.
  • 4.Поясничный и крестцовый отделы симпатического ствола, симпатическая иннервация органов брюшной полости и малого таза.
  • 1.Голеностопный и подтаранные суставы: строение, форма. Мышцы, действующие на суставы, их кровоснабжение, иннервация.
  • 2.Спинной мозг: топография, наружное и внутреннее строение, локализация ядер и проводящих путей в спинном мозге.
  • 3. Основные аномалии развития сердца и крупных артерий. Врожденные пороки.
  • 4.Шейный отдел симпатического ствола, иннервация органов: головы, шеи, сердца.
  • 4.III, IV, VI пары черепных нервов и области их иннервации. Пути зрачкового рефлекса.
  • 1.Диафрагма: положение, части, функция, кровоснабжение, иннервация.
  • 2.Селезенка: развитие, топография, строение, функция, кровоснабжение, иннервация.
  • 3.Органы иммунной системы: классификация, общие закономерности анатомической организации органов иммунитета.
  • 4.Третья ветвь тройничного нерва и области ее иннервации.
  • 1. Соединения позвоночного столба с черепом; атлантозатылочный сустав. Суставы между атлантом и осевым позвонком.
  • 2.Аорта и ее отделы. Ветви дуги аорты и ее грудной части (париетальные и висцеральные).
  • 3.Бранхиогенные железы внутренней секреции: щитовидная, паращитовидная, вилочковая, их топография, строение, кровоснабжение, иннервация.
  • 4.Шейное сплетение: строение, топография, нервы и области их иннервация.
  • 1.Подмышечная полость: ее строение, содержимое. Канал лучевого нерва.
  • 2.Мышцы стопы: их функции, кровоснабжение, иннервация, лимфоотток.
  • 3.Внутреннее ухо: костный перепончатый лабиринты. Спиральный (Кортиев) орган. Проводящий путь слухового анализатора.
  • 4.Лицевой нерв и его составная часть – промежуточный (Вризбергов) нерв, ветви, области иннервации.
  • 1.Медиальная и задняя группы мышц бедра, их функции, кровоснабжение, иннервация.
  • 2.Топография нижнего этажа брюшины, «карманы», каналы, брыжеечные синусы, углубления.
  • 4.Плечевое сплетение: строение, топография, длинные нервы сплетения и области иннервации.
  • 1.Бедренный канал его стенки и кольца: глубокое и подкожное. Фасции бедра, скрытая (овальная) ямка.
  • 3.Анатомия среднего уха: стенки барабанной полости, отверстия, слуховые косточки, слуховая труба. Кровоснабжение и иннервация среднего уха.
  • 4. Морфологические различия соматической и вегетативной рефлекторных дуг. Серые и белые соединительные ветви
  • 3.Вспомогательный аппарат глаза: мышцы глазного яблока, конъюнктива, веки, слезный аппарат, их кровоснабжение, иннервация.
  • 4. Экстрапирамидная система, ее ядра и основные проводящие пути. Формирование двигательного автоматизма.
  • 2.Полость рта, диафрагма рта, небо, зев, преддверно и соответственно полость рта. Губы, щеки, десны.
  • 3.Лимфатическое русло и регионарные лимфатические узлы матки и прямой кишки.
  • 4.Вегетативные сплетения грудной и брюшной полостей.
  • 1.Развитие пищеварительной системы. Общие закономерности строения пищеварительного канала. Пороки развития.
  • 2.Мышцы и фасции мужской, женской промежности: их топография, функции, половые особенности, кровоснабжение, иннервация, регионарные лимфатические узлы.
  • 4.Ретикулярная формация головного мозга, ее строение, положение в различных отделах мозга, связи, функция.
  • 1.Характеристика внутреннего основания черепа: отверстия их назначения.
  • 2.Характеристика брюшины в полости мужского и женского таза. Его отношение к прямой кишке, мочевому пузырю, матке.
  • 3.Поверхностные и глубокие вены верхней конечности, их анатомия, топография, анастомозы.
  • 4.Классификация и характеристика органов чувств. Морфофункциональные особенности сенсорных систем организма.
  • 1.Анатомия ягодичной области: топография мышц, их функция, аровоснабжение, иннервация.
  • 2.Матка: развитие, топография, строение, кровоснабжение, регионарные лимфоузлы, иннервация.
  • 3.Камеры сердца, их анатомия: клапанный аппарат, их строение. Механизм регуляции тока крови в сердце.
  • 4. Обонятельная и вкусовая сенсорные системы.
  • 1.Наружное основание черепа: отверстия и их значение.
  • 3.Зубы – молочные и постоянные, их строение, смена зубов. Зубной ряд, формула молочных и постоянных зубов, их кровоснабжение и иннервация.
  • 3.Вспомогательный аппарат глаза: мышцы глазного яблока, конъюнктива, веки, слезный аппарат, их кровоснабжение, иннервация.

    Мышцы глазного яблока – 6 поперечно-полосатых мышц: 4 прямые – верхняя, нижняя, латеральная и медиальная, и две косые - верхняя и нижняя.

    Мышца, поднимающая верхнее веко, т. levator palpebrae superi ­ oris . р асполагается в глазнице над верхней прямой мыш­цей глазного яблока, а заканчивается в толще верхнего века. Прямые мышцы вращают глазное яблоко вокруг вертикальной и горизон­тальной осей.

    Латеральная и медиальная прямые мышцы, тт. recti late ­ ralis et medialis , поворачивают глазное яблоко кнаружи и кнутри вокруг вертикальной оси, поворачивается зрачок.

    Верхняя и нижняя прямые мышцы, тт. recti superior et inferior , поворачивают глазное яб­локо вокруг поперечной оси. Зрачок при действии верхней пря­мой мышцы направляется кверху и несколько кнаружи, а при работе нижней прямой мышцы - вниз и кнутри.

    Верхняя косая мышца, т. obliquus superior , лежит в верхнемедиальной части глазницы между верхней и медиальной прямыми мышцами, поворачивает глазное яблоко и зрачок вниз и латерально.

    Нижняя косая мышца, т. obliquus inferior , начинается от глазничной поверхности верхней челюсти возле отверстия носослезного канала, на нижней стенке глазни­цы, направляется между ней и нижней прямой мышцей косо вверх и кзади.,поворачивает глазное яблоко - вверх и латерально.

    Веки. Верхнее веко, palpebra superior , и нижнее веко, palpebra inferior , - образования, лежащие впереди глазного яблока и прикрывающие его сверху и снизу, а при смы­кании век полностью его закрывающие.

    Передняя поверхность века, facies anterior palpebra, выпуклая, покрыта тонкой кожей с короткими пушко­выми волосами, сальными и потовыми железами. Задняя поверх­ность века, facies posterior palpebrae, обращена в сторону глазного яблока, вогнутая. Эта поверхность века по­крыта конъюнктивой, tunica conjuctiva .

    Конъюнктива, tunica conjunctiva , соеди­нительнотканная оболочка. В ней выде­ляют конъюнктиву век, tunica conjunativa palpebrarum , покрывающую изнутри веки, и конъюнктиву глазного яблока, tunica conjunctiva bulb а ris , которая на роговице пред­ставлена тонким эпителиальным покровом.. Все пространство, лежащее спереди от глазного яблока, ограниченное конъюнктивой, назы­вают конъюнктивальным мешком, saccus conjunctivae

    Слезный аппарат, apparatus lacrimalis , включает слезную железу с ее выводными канальцами, открывающимися в конъюнктивальный мешок, и слезоотводящие пути. Слез­ная железа, gl а ndula l а crim а lis , - сложная альвеолярно-трубчатая железа, лежит в одноименной ямке в латеральном углу, у верхней стенки глазницы. Выводные канальцы слезной железы, ducxuli excretorii открываются в конъюнктивальный мешок в латеральной части верхнего свода конъюнктивы.

    Кровоснабжение : Ветви глазной артерии, являющейся ветвью внутренней сонной артерии. Венозная кровь - по глазным венам в пещеристый синус. Сетчатку кровоснабжает центральная артерия сетчатки, a . centr а lis retinae , Два артериальных круга: большой, circulus arteriosus iridis major , у ресничного края радужки и малый, cir ­ culus arteridsus iridis minor , у зрачкового края. Склера кровоснабжается задними короткими ресничными артериями.

    Веки и конъюнктива - из медиальной и лате­ральной артерий век, анастомозы между которыми образуют в толще век дугу верхнего века и дугу нижнего века, и передних конъюнктивальных артерий. Одноименные вены впадают в глаз­ную и лицевую вены. К слезной железе направляется слезная артерия, a . lacrimalis .

    Иннервация: Чувствительную иннервацию - из первой ветви тройничного нерва - глазного нерва. От его вет­ви - носоресничного нерва, отходят длинные ресничные нервы, подходящие к глазному яблоку. Нижнее веко иннервируется подглазничным нервом, являющимся ветвью второй ветви трой­ничного нерва. Верхняя, нижняя, ме­диальная прямые, нижняя косая мышцы глаза и мышца, подни­мающая верхнее веко, получают двигательную иннервацию из глазодвигательного нерва, латеральная прямая - из отводящего нерва, верхняя косая - из блокового нерва.

    "

    Глазодвигательных мышц всего шесть, четыре из них прямые, две косые. Такое название мышцы получили из-за особенностей их хода в глазнице, а также прикрепления к яблоку глаза. Работу мышц контролируют три черепно-мозговые нерва: глазодвигательный, отводящий, блоковый. Каждое мышечное волокно данной группы мышц богато нервными окончаниями, что обеспечивает движениям особую точность и четкость.

    Благодаря глазодвигательным мышцам обеспечивается вариабельность движений глазных яблок, включая однонаправленные - вверх, вправо и пр., и разнонаправленные - сведение глаз. Суть таких движений заключается в том, что за счет слаженной мышечной работы одинаковое изображение предмета попадает на одни участки сетчатки глаз - макулярную область, что обеспечивает хорошее зрение, дает ощущение пространственной глубины.

    Принято выделять шесть глазодвигательных мышц, четыре из них идут в прямом направлении и называются прямыми: внутренняя, наружная, верхняя, нижняя. Две оставшиеся, имеют несколько косое направление хода, а также способ прикрепления к яблоку глаза, а потому получили название косых: верхняя и нижняя.

    Все мышцы, исключая нижнюю косую, берут свое начало в соединительнотканном плотном кольце, которое окружает наружное отверстие в зрительном канале. В самом начале 5 мышц образуют некую мышечную воронку, где проходят зрительный нерв, кровеносные сосуды и нервы. После, верхняя косая мышца отклоняется постепенно кверху и кнутри, продвигаясь, к так называемому, блоку. Это место, где мышца трансформируется в сухожилие, переброшенное через петлю блока, отчего и меняет направление на косое, далее прикрепляясь в районе верхненаружного квадранта глазного яблока ниже верхней прямой мышцы. Нижняя косая мышца берет начало от нижневнутреннего глазничного края, проходит внизу нижней прямой мышцы кнаружи и кзади, и прикрепляется в районе нижненаружного квадранта глазного яблока.

    В непосредственной близости от глазного яблока, у мышц появляется поверхностный слой - плотная капсула теноновой оболочки. Присоединение их к склере происходит на различном расстоянии от лимба. Особенно близко к лимбу из прямых мышц крепится внутренняя, а дальше остальных - верхняя прямая. Косые мышцы крепятся к яблоку глаза немного сзади экватора глазного яблока - середины его длинны.

    Работу мышц, в большей степени, регулирует глазодвигательный нерв. Он управляет внутренней, верхней, нижней косой и нижней прямой мышцами. Функции наружной прямой мышцы координирует отводящий нерв, в то время, как верхней косой мышцей управляет блоковый нерв. Особенность подобной нервной регуляции в том, что одной веточкой двигательного нерва контролируется работа весьма малого числа мышечных волокон, что позволяет обеспечивать максимальную точность в движениях глаз.

    Движения глазного яблока полностью зависят от особенностей крепления мышц. Зона прикрепления наружной и внутренней прямых мышц соответствует горизонтальной плоскости глазного яблока, что обеспечивает горизонтальные движения: поворот их к носу (сокращение внутренней прямой мышцы) либо к виску (сокращение наружной прямой мышцы).

    Нижняя и верхняя прямые мышцы обеспечивают в основном вертикальные движения глаз, но из-за того, что линия прикрепления мышц локализована несколько косо в отношении линии лимба, то вместе с движением глаз по вертикали происходит и движение их кнутри.

    Косые мышцы, сокращаясь вызывают более сложные движения, это связано с некими особенностями расположения мышц, а также их крепления к склере. Функция верхней косой мышцы - глаз опускать и поворачивать кнаружи, а нижней косой - поднимать его и отводить кнаружи.

    Вместе с тем, верхняя и нижняя прямые мышцы и косые мышцы способны обеспечивать небольшие повороты глаза по часовой стрелке или против нее. Хорошая нервной регуляции, а также слаженная работа мышц глазного яблока дают возможность выполнять сложные движения: односторонние либо направленные в разные стороны, что обеспечивает объем и качество зрения, его бинокулярность.

    Видео о строении мышц глаза

    Методы диагностики

    • Визуальное исследование подвижности глаз, с оценкой полноты движений при отслеживании перемещаемого объекта.
    • Страбометрия - оценка угла отклонения глаза при косоглазии от средней линии.
    • Тест с поочередным прикрыванием глаз, определяющий скрытое косоглазие - гетерофорию, а при явном косоглазии, определяющий его вид.
    • Ультразвуковая диагностика, для определения поражений глазодвигательных мышц, локализованных поблизости к глазному яблоку.
    • Магнитно-резонансная томография, компьютерная томография - выявление поражений глазодвигательных мышцы на всем протяжении.

    Симптоматика заболеваний

    • Двоение - состояние может быть обусловлено явным косоглазием или выраженным скрытым косоглазии.
    • Нистагм - возникает из-за нарушения способности к фиксации объектов взглядом.
    • Нарушение содружественного движения глаз, ограничение подвижности пораженного глаза.
    • Боль, усиливающаяся при движении глаз.
    • Опущение века.
    • Нарушение бинокулярного зрения.

    Болезни, затрагивающие мышцы глаза

    • Косоглазие.
    • Птоз.
    • Воспаление мышц (миозит).
    • Лагофтальм.
    • Блефароспазм.
    • Гетерофория.
    • Нарушение рефракции (миопия, гиперметропия).