Типы двигательных единиц. Классификация двигательных единиц Мышцы состоящие из быстрых двигательных единиц

  • 24.02.2024

Моторная или двигательная единица представляет собой группу волокон, которые иннервируются одним мотонейроном. Количество волокон, входящих в одну единицу, может варьироваться в зависимости от функции мышцы. Чем более мелкие движения она обеспечивает, тем меньше моторная единица и меньше усилий надо для ее возбуждения.

Двигательные единицы: их классификация.

В изучении данной темы есть важный момент. Существуют критерии, по которым может быть охарактеризована любая двигательная единица. Физиология как наука, выделяет два критерия:

  • скорость сокращения в ответ на проведение импульса;
  • скорость утомления.

Соответственно, исходя из этих показателей, можно выделить три типа двигательных единиц.

  1. Медленные, не утомляющиеся. Их мотонейроны содержат много миоглобина, который имеет высокое сродство к кислороду. Мышцы, имеющие в большом количестве медленные мотонейроны, называются красными из-за их специфического цвета. Они необходимы для поддержания позы человека и удержания его в равновесии.
  2. Быстрые, утомляемые. Такие мышцы способны выполнять большое количество сокращений за короткий промежуток времени. Волокна их содержат много энергетического материала, из которого при помощи можно получить молекулы АТФ.
  3. Быстрые, устойчивые к утомлению. В этих волокнах содержится мало митохондрий, а АТФ образуется за счет расщепления молекул глюкозы. Эти мышцы именуются белыми, поскольку в них отсутствует миоглобин.

Единицы первого типа

Двигательная единица первого типа или медленная неутомляемая, встречается чаще всего в крупных мышцах. Такие мотонейроны имеют низкий порог возбуждения и скорость проведения нервного импульса. Центральный отросток нервной клетки в своем терминальном отделе разветвляется и иннервирует небольшую группу волокон. Частота разрядов, поступающих к медленным двигательным единицам - от шести до десяти импульсов в секунду. Мотонейрон может поддерживать такой ритм в течение нескольких десятков минут.

Сила и скорость сокращения двигательных единиц первого типа в полтора раза меньше, чем у других типов моторных единиц. Причина этого - низкая скорость образования АТФ и медленных выходов ионов кальция на наружную мембрану клетки для связывания с тропонином.

Единицы второго типа

Двигательная единица этого типа имеет крупный мотонейрон с толстым и длинным аксоном, который иннервирует большой пучок мышечных волокон. Эти нервные клетки имеют наиболее высокий порог возбуждения и высокую скорость проведения

При максимальном напряжении мышцы, частота нервных импульсов может достигать пятидесяти в секунду. Но мотонейрон не способен длительно поддерживать такую скорость проведения, поэтому быстро устает. Сила и скорость сокращения мышечного волокна второго типа выше, чем у предыдущего, так как количество миофибрилл в нем больше. В волокнах содержится много ферментов, расщепляющих глюкозу, но меньше митохондрий, белка миоглобина и кровеносных сосудов.

Единицы третьего типа

Двигательная единица третьего типа относится быстрым, но устойчивым к утомлению мышечным волокнам. По своим характеристикам она должна занимать промежуточное значение между первым типом двигательных единиц и вторым. таких мышц сильные, быстрые и выносливые. Для добычи энергии она могут использовать как аэробный, так и анаэробный пути.

Соотношение быстрых и медленных волокон генетически детерминировано и может отличаться у разных людей. Именно поэтому кто-то хорош в беге на длинные дистанции, кто-то с легкостью преодолевает спринтерскую стометровку, а кому-то больше подходит тяжелая атлетика.

Рефлекс на растяжение и мотонейронный пул

При растягивании любой мышцы первыми реагируют медленные волокна. Их нейроны генерируют разряды до десяти импульсов в секунду. Если мышцу продолжать растягивать, то частота генерируемых импульсов возрастет до пятидесяти. Это приведет к сокращению двигательных единиц третьего типа и увеличит силу мышцы в десять раз. При дальнейшем растяжении подключатся моторные волокна второго типа. Это преумножит еще в четыре-пять раз.

Двигательная мышечная единица управляется мотонейроном. Совокупность нервных клеток, входящих в состав одной мышцы, называется мотонейронный пул. В одном пуле могут одновременно находиться нейроны из разных, по качественным и количественным проявлениям, двигательных единиц. Из-за этого участки мышечных волокон включаются в работу не одновременно, а по мере того, как увеличивается напряжение и скорость нервных импульсов.

«Принцип величины»

Двигательная единица мышцы, в зависимости от ее типа, сокращается только при достижении определенной пороговой нагрузки. Порядок возбуждения моторных единиц стереотипный: сначала сокращаются мелкие мотонейроны, затем нервные импульсы постепенно добираются до крупных. Эту закономерность в середине двадцатого века заметил Эдвуд Хеннеман. Он назвал ее «принцип величины».

Броун и Бронк за полвека до этого публиковали свои труды по исследованию принципа работы мышечных единиц разных типов. Они выдвинули предположение, что существует два способа управления сокращениями мышечных волокон. Первый из них - это увеличить частоту нервных импульсов, а второй - вовлечь в процесс как можно большее количество мотонейронов.

Быстрые

Медленные

Нейрон

Крупные мотонейроны

Мелкие мотонейроны

Возбудимость меньше

Возбудимость больше

Диаметр аксона больше

Диаметр аксона меньше

Скорость проведения возбуждения больше

Скорость проведения возбуждения меньше

Частота больше

Частота меньше

Мышечные волокна

Активность актомиозиновой АТФазы выше

Активность актомиозиновой АТФазы меньше

Плотность упаковки актомиозиновых филаментов выше

Плотность упаковки актомиозиновых филаментов меньше

Более выражен саркоплазматический ретикулум (депо кальция)

Менее выражен саркоплазматический ретикулум (депо кальция)

Латентный период после поступления ПД меньше

Латентный период после поступления ПД больше

Плотность кальциевой помпы выше

Плотность кальциевой помпы меньше

Быстрее сокращается и расслабляется

Медленнее сокращается и расслабляется

Выше активность ферментов гликолиза

Выше активность ферментов окисления

Быстрее восстановление АТФ

Восстановление АТФ медленнее, но экономичнее

1 моль глюкозы –2-3 молей АТФ

1 моль глюкозы 36-58 молей АТФ

Образуются недоокисленные субстраты, «закисление» - быстрое утомление

утомление менее выражено

Большая плотность капилляров – больше оксигенация, больше миоглобина

Двигательная единица

Менее возбудима, большая сила и скорость сокращения, большая утомляемость, низкая выносливость

Более возбудима, меньшая сила, скорость сокращения, малая утомляемость, высокая выносливость

спринтеры

В наружной мышце бедра медленные волокна от 13 до 96 %

Трехглавая мышца плеча 33%, двуглавая 49%, передняя большеберцовая 46%, камбаловидная 84 %

Нейрофизиологические основы метода электромиографии.

Электромиография - этот метод исследования нервно-мышечной системы посредством регистрации электрических потенциалов мышц. Хотя впервые электромиограмма (ЭМГ) была зарегистрирована с помощью телефонного устройства Н. Е. Введенским еще в 1884 г., а в 1907 г. удалось осуществить графическую запись ЭМГ человека, интенсивное развитие электромиографии в качестве клинической диагностической методики началось в 30-40-е годы XX столетия Определенная задержка прогресса в этой области по сравнению, например, с развитием электроэнцефалографии, объясняется высокими требованиями к качеству регистрации и точности воспроизведения истинных параметров электрических потенциалов в электромиографии. Создание высококачественных усилителей, дающих линейные характеристики в диапазоне высоких частот, и разработка методов катодной регистрации, обеспечивающей неискаженное воспроизведение высокочастотных составляющих электрического потенциала до диапазона 20000 Гц, привели к существенному прогрессу в области клинического применения электромиографии

При внутриклеточной регистрации потенциал действия выглядит как положительный пик, состоящий из быстрой деполяризации, длящейся около 1 мс, быстрой реполяризации, представляющей собой возвращение потенциала почти до уровня покоя, длящейся около 2 мс; затем следуют медленная реполяризация, небольшая следовая гиперполяризация и возврат потенциала к уровню покоя. В клинической электромиографии при внеклеточной регистрации макроэлектродом потенциал действия мышечного волокна представлен негативным пиком длительностью 1-3 мс.

Техника отведения и регистрации ЭМГ

Принципы техники отведения и регистрации ЭМГ не отличаются от техники электроэнцефалографии, электрокардиографии и других электрографических методов. Система состоит из электродов, отводящих потенциалы мышцы, усилителя этих потенциалов и регистрирующего устройства. В электромиографии используется два вида электродов - поверхностные и игольчатые. Поверхностные электроды представляют собой металлические пластины или диски площадью около 0,2 - 1 см 2 , обычно вмонтированные попарно в фиксирующие колодки, обеспечивающие постоянство расстояний между отводящими электродами, что важно для оценки амплитуды регистрируемой активности. Такие электроды накладывают на кожу над областью двигательной точки мышцы. Кожу перед наложением электрода протирают спиртом и смачивают изотоническим раствором хлорида натрия. Электрод фиксируют над мышцей с помощью резиновых полос, манжет или лейкопластыря. При необходимости длительного исследования на область кожно-электродного контакта наносят специальную электродную пасту, используемую в электроэнцефалографии. Большой размер и удаленность от мышечной ткани поверхностного электрода позволяют регистрировать с его помощью только суммарную активность мышц, представляющую собой интерференцию потенциалов действия многих сотен и даже тысяч мышечных волокон. При больших усилениях и сильных мышечных сокращениях поверхностный электрод регистрирует также активность соседних мышц. Все это не позволяет исследовать с помощью поверхностных электродов параметры отдельных мышечных потенциалов. В получаемой регистрации только ориентировочно оценивают частоту, периодичность и амплитуду ЭМГ. Преимущество поверхностных электродов являются атравматичность, отсутствие риска инфекции, простота обращения с электродами. Безболезненность исследования не налагает ограничений на количество исследуемых за один раз мышц, делает этот метод предпочтительным при обследовании детей, а также при физиологическом контроле в спортивной медицине или при исследовании с применением массивных и сильных движений.

Игольчатые электроды бывают концентрическими, биполярными и монополярными. В первом варианте электрод представлен полой иглой диаметром около 0,5 мм внутри которой проходит отделенный от нее слоем изоляции проволочный стержень из платины или нержавеющей стали. Разность потенциалов измеряют между корпусом иглы и кончиком центрального стержня. Иногда для увеличения локальности отведения иглу изолируют также снаружи, причем неизолированной оставляют только ее эллиптическую поверхность по плоскости среза. Площадь отводящей поверхности осевого стержня стандартного концентрического электрода составляет 0,07 мм 2 Приводимые в современных публикациях параметры потенциалов ЭМГ относятся к электродам этого типа и размера. При существенном увеличении площади контакта отводящего электрода параметры потенциалов могут существенно меняться. Это же относится к изменениям конструкции электрода (биполярный, монополярный, мультиэлектрод). Биполярный электрод содержит внутри иглы два одинаковых изолированных друг от друга стержня, между обнаженными кончиками, которых, отстоящими друг от друга на десятые доли миллиметра, измеряют разность потенциалов. Наконец, для монополярных отведений используют электроды, представляющие собой иглу, изолированную на всем протяжении, кроме заостренного конца, оголенного на протяжении 1-2 мм. Игольчатые электроды используют для исследования параметров ПД отдельных ДЕ и мышечных волокон. Отведение игольчатым электродом является основным в клинической миографии, ориентированной на диагностику первично-мышечных и нервно-мышечных заболеваний. Запись отдельных ПД в ДЕ и мышечных волокон позволяет точно оценить длительность, амплитуду, форму и фазность потенциала

Виды отведений

Независимо от типа электродов различают два способа отведения электрической активности - моно- и биполярный. В электромиографии монополярным называется такое отведение, когда один электрод располагается непосредственно вблизи исследуемого участка мышц, а второй - в удаленной от него области (кожа над костью, мочка уха и др.). Преимуществом монополярного отведения является возможность определить форму потенциала исследуемой структуры и истинную фазу отклонения потенциала. Недостаток заключается в том, что при большом расстоянии между электродами в запись вмешиваются потенциалы от других отделов мышцы или даже от других мышц. Биполярное отведение - это такое отведение, при котором оба электрода находятся на достаточно близком и одинаковом расстоянии от исследуемой области мышцы. Таковым является отведение с помощью биполярных или концентрических игольчатых электродов и с помощью пары поверхностных электродов, зафиксированных в одной колодке. Биполярное отведение в малой степени регистрирует активность от отдаленных источников потенциала, особенно при использовании игольчатых электродов. Влияние на разность потенциалов активности, поступающей от источника на оба электрода, приводит к искажению формы потенциала и невозможности определить истинную фазу потенциала. Тем не менее высокая степень локальности делает этот способ предпочтительным в клинической практике. Поскольку отведение поверхностными электродами в любом случае регистрирует интерференционную активность многих взаимоналагающихся ПД ДЕ, использование такого монополярного отведения не имеет смысла.

Кроме электродов, разность потенциалов которых подается на вход усилителя ЭМГ, на кожу исследуемого устанавливают поверхностный электрод заземления, который присоединяют к соответствующей клемме на электродной панели электромиографа. Разность потенциалов от электродов подается на вход усилителя напряжения. Усилитель снабжен ступенчатым переключателем коэффициента усиления, позволяющим регулировать уровень усиления в зависимости от амплитуды регистрируемой активности. Усиленную электрическую активность выводят не только на осциллоскоп, но и на громкоговоритель, что позволяет оценивать электрические потенциалы на слух

Общие принципы анализа ЭМГ и электромиографическая семиотика.

Анализ электромиографической кривой включает на первом этапе дифференциацию собственно электрических потенциалов мышц от возможных артефактов и затем, на основном этапе, оценку собственно ЭМГ. Предварительная оперативная оценка осуществляется по экрану осциллографа и акустическим феноменам, возникающим при выводе усиленной ЭМГ на громкоговоритель; окончательный анализ с количественной характеристикой ЭМГ и клиническим заключением производят по записи на бумаге или кинопленке.

Артефактными потенциалами в ЭМГ называются потенциалы, не связанные собственно с активностью мышечных элементов. При поверхностном отведении артефакты могут обусловливаться движением электрода вследствие его неплотной фиксации на коже, что приводит к появлению высокоамплитудных скачков потенциала неправильной формы. При игольчатом отведении аналогичные изменения потенциала могут возникать при прикосновении к электроду, соединительным проводам, при массивных движениях исследуемой мышцы. Наиболее часто встречающимся видом помехи является наводка 50 Гц от устройств эксплуатации промышленного тока. Она легко распознается по характерной синусоидальной форме и постоянной частоте и амплитуде. Возникновение ее может быть связано с большим электродным сопротивлением, что требует соответствующей обработки игольчатого электрода. При поверхностных электродах устранение наводки может быть достигнуто более тщательной очисткой кожи спиртом, использованием электродной пасты.

Анализ ЭМГ включает оценку формы, амплитуды и длительности потенциалов действия отдельных мышечных волокон и ДЕ и характеристику интерференционной активности, возникающей при произвольном мышечном сокращении. Форма отдельного колебания мышечного потенциала может быть моно-, ди-. три- или полифазной. Как и в электроэнцефалографии, монофазным называется такое колебание, при котором кривая совершает отклонение в одну сторону от изоэлектрической линии и возвращается к исходному уровню. Дифазным называется колебание, при котором кривая по совершении отклонения в одну сторону от изоэлектрической линии пересекает ее и совершает колебание в противоположной фазе; трехфазное колебание совершает соответственно три отклонения в противоположные стороны от изоэлектрической линии. Полифазным называется колебание, содержащее четыре и более фаз.

Стимуляционные методы в электромиографии

Кроме исследования электрической активности мышц в покое, при рефлекторных и произвольных сокращениях, современная комплексная методика клинической электромиографии включает исследование электрических реакций нервов и мышц на электрическую стимуляцию. Аппаратура и способы регистрации вызванной стимуляцией электрической активности те же, что и в обычной электромиографии. Для стимуляции нервов и мышц используют электростимуляторы. Стимуляцию мышц производят накожными электродами в двигательных точках, стимуляцию нервов согласно зонам их проекции на кожу. Стимулирующие электроды изготавливают в виде металлических дисков диаметром 6-8 мм, вмонтированных в металлическую обойму и смачиваемых изотоническим раствором хлорида натрия. Стимуляционные методы в диагностике нервно-мышечных заболеваний решают следующие основные задачи: 1) исследование прямой возбудимости мышц; 2) исследование нервно-мышечной передачи; 3) исследование состояния мотонейронов и их аксонов; 4) исследование состояния чувствительных волокон периферических нервов. С помощью электромиографии можно выявить, связано ли изменение электрической активности с поражением мотонейрона или синаптических и надсег-ментарных структур.

Электромиографические данные широко используются для уточнения топического диагноза и объективизации патологических или восстановительных процессов. Высокая чувствительность этого метода, позволяющая выявлять субклинические поражения нервной системы, делает его особенно ценным. Электромиография широко применяется не только в неврологической практике, но и при изучении поражения других систем, когда возникают вторично обусловленные нарушения двигательной функции (сердечно-сосудистые, обменные, эндокринные заболевания).

При произвольном расслаблении мышц улавливаются только очень слабые (до 10-15 мкВ) и частые колебания биопотенциала. Рефлекторные изменения мышечного тонуса характеризуются незначительным увеличением амплитуд частых, быстрых и изменчивых по ритму колебаний биопотенциалов (до 50 мкВ). При произвольных сокращениях мышц регистрируются интерференционные электромиограммы (с частыми высоковольтными биопотенциалами до 2000 мкВ).

Поражение клеток переднего рога спинного мозга вызывает изменение ЭМГ в зависимости от тяжести повреждения, характера течения заболевания и стадии его. При парезе наблюдаются уреженные, ритмические колебания с увеличением продолжительности до 15-20 мс. Поражение переднего корешка или периферического нерва вызывает снижение амплитуды и частоты биопотенциалов, изменение формы ЭМГ-кривой. Вялый паралич проявляется “биоэлектрическим молчанием”.

ЭМГ одной из мышц руки человека в норме. . Электромиограмма при поражении передних рогов спинного мозга.

Вопросы для самостоятельной внеаудиторной работы студентов:

    Состав двигательной единицы. Понятие моторного пула.

    Классификация двигательных единиц.

    Сравнительная характеристика быстрых и медленных двигательных единиц.

    Регуляция силы сокращения целостной мышцы. Принципы «вовлечения» двигательных единиц, фракционирования моторного пула, общего конечного пути.

    Метод электромиографии, принцип метода, медицинское значение метода ЭМГ.

    В тетради практических работ подготовить краткую характеристику метода ЭМГ (принцип метода, необходимая аппаратура, виды электродов и особенности их применения, медицинское значение метода).

По морфофункциональным свойствам двигательные единицы делятся на 3 типа:

1. Медленные неутомляемые ДЕ. Мотонейроны имеют наиболее низкий порог активации, способны поддерживать устойчивую частоту разрядов в течение десятков минут (т.е. неутомляемы). Аксоны обладают небольшой толщиной, низкой скоростью проведения возбуждения, иннервируют небольшую группу мышечных волокон. Мышечные волокна развивают небольшую силу при сокращении в связи с наличием в них наименьшего количества сократительных белков – миофибрилл. Это так называемые «красные волокна» (цвет обусловлен хорошим развитием капиллярной сети и небольшим количеством миофибрилл). Скорость сокращения этих волокон в 1,5 – 2 раза меньше, чем быстрых. Они неутомляемы благодаря хорошо развитой капиллярной сети, большому количеству митохондрий и высокой активности окислительных ферментов.

2. Быстрые, легко утомляемые ДЕ. Имеют наиболее крупный мотонейрон, обладающий наиболее высоким порогом возбуждения, не способны в течение длительного времени поддерживать устойчивую частоту разрядов (утомляемые). Аксоны толстые, с большой скоростью проведения нервных импульсов, иннервирует много мышечных волокон. Мышечные волокна содержат большое число миофибрилл, поэтому при сокращении развивают большую силу. Благодаря высокой активности ферментов скорость сокращения высокая. Эти волокна быстро утомляются, т.к. содержат меньше, по сравнению с медленными, митохондрий и окружены меньшим количеством капилляров.

3. Быстрые, устойчивые к утомлению. Сильные, быстро сокращающиеся волокна, обладающие большой выносливостью благодаря возможности использования аэробных и анаэробных процессов получения энергии. Волокна 2 и 3 типов называются «белыми волокнами» из-за большого содержания миофибрилл и низкого – миоглобина.

Сравнение медленных и быстрых мышечных волокон

Скелетная мышца человека состоит из волокон 3 типов, однако их соотношение может значительно отличаться в зависимости от функции мышцы, а также врожденной и приобретенной индивидуальности. Чем больше в мышцах белых волокон, тем лучше человек приспособлен к выполнению работы, требующей большой скорости и силы. Преобладание красных волокон обеспечивает выносливость при выполнении длительной работы.

Строение скелетной мышцы

Скелетная мышца состоит из множества мышечных волокон, которые расположены пучками в общем соединительнотканном футляре и крепятся к сухожилиям, связанным со скелетом. Каждое мышечное волокно – это тонкое (от 10 до 100 мкм) вытянутое в длину (от 5 до 400мм) многоядерное образование – симпласт .

Мембраны мышечного волокна сходна по строению с нервной, но она дает регулярные Т-образные впячивания . Внутри мышечного волокна параллельно мембране располагается разветвленная замкнутая система трубочек – саркоплазматический ретикулум – внутриклеточное депо Ca 2+ . Т-система и прилегающий к ней СР – аппарат передачи возбуждения с мембраны мышечного волокна на сократительные структуры (миофибриллы) . В саркоплазме мышечного волокна можно увидеть поперечные чередующиеся светлые и темные участки – соответственно, J- (изотропные) и А-(анизотропные) диски. В соседних миофибриллах одноименные диски расположены на одном уровне, что придает волокну поперечную исчерченность. Комплекс из одного темного и двух прилежащих к нему половин светлых дисков, ограниченных поперечными Z-пластинками, называют саркомером .

Каждая миофибрилла состоит их множества параллельно лежащих толстых (миозиновых) и тонких (актиновых) белковых нитей – миофиламентов . По сечению волокна толстые и тонкие нити располагаются высокоорганизованно в узлах гексагональной решетки. Каждая толстая нить окружена шестью тонкими, каждая из тонких нитей частично входит в окружение трех соседних толстых. Миозиновые нити имеют отходящие от них поперечные выступы с головками, состоящими примерно из 150 молекул миозина. Актиновая нить состоит из двух закрученных одна вокруг другой цепочек (подобно скрученным ниткам бус) молекул актина. На нитях актина расположены молекулы тропонина , а в желобках между двумя нитями актина лежат нити тропомиозина .

Механизм сокращения мышечного волокна

В 1954 г. Г.Хаксли и Н.Хэнсон обнаружили, что актиновые и миозиновые филаменты не изменяют своей длины при укорочении или удлинении саркомера и вывели теорию скольжения нитей : мышечное сокращение происходит при последовательном связывании нескольких центров миозиновой головки поперечного мостика с определенными участками на актиновых филаментах.

В покоящихся мышечных волокнах молекулы тропомиозина в покое располагаются так, что предотвращают прикрепление поперечных мостиков миозина к актиновым нитям (мышца расслаблена).

Возникающий в области аксо-соматического синапса ПД распространяется по системе Т-трубочек вглубь волокна, вызывая деполяризацию цистерн саркоплазматического ретикулума (депо Са 2+). При активации мембраны СР происходит открытие Са-каналов и выход Са 2+ по концентрационному градиенту.

При повышении в миоплазме концентрации ионов Са 2+ он соединяется с тропонином, последний конформируется и отодвигает нить тропомиозина, открывая для миозиновой головки возможность соединения с актином. Соединение головки приводит к резкому «сгибанию» мостика и перемещению нити актина на 1 шаг (20 нм или 1% длины актина) к середине саркомера с последующим разрывом мостика.

При отсутствии повторного возбуждения концентрация Са 2+ благодаря работе Са-насоса падает. Поэтому Са 2+ отсоединяется от тропонина и тропомиозин снова блокирует актин. При этом на одно рабочее движение одного мостика тратится энергия 1 молекулы АТФ, еще одной – на возврат 2 ионов Са 2+ в цистерны.

Все это приводит к расслаблению мышцы вплоть до момента прихода очередного потока нервных импульсов, когда описанный выше процесс повторяется.

Совокупность процессов, обуславливающих распределение ПД вглубь мышечного волокна, выход ионов Са 2+ из саркоплазматического ретикулума, взаимодействие сократительных белков и укорочение мышечного волокна называется электромеханическим сопряжением .

Механика мышцы. Физические свойства и режимы мышечных сокращений

Физические свойства скелетных мышц

1. Растяжимость - способность мышцы изменять свою длину под действием растягивающей ее силы.

2. Эластичность - способность мышцы принимать свою первоначальную длину после прекращения действия растягивающей или деформирующей силы.

3. Сила мышцы. Она определяется максимальным грузом, который мышца в состоянии поднять. Удельная сила - максимальный груз, который мышца в состоянии поднять, делят на число квадратных сантиметров ее физиологического поперечного сечения.

4. Способность мышцы совершать работу . Работа мышцы определяется произведением величины поднятого груза на высоту подъема. Работа мышцы постепенно увеличивается с увеличением груза, но до определенного предела, после которого увеличение груза приводит к уменьшению работы, т. к. снижается высота подъема груза. Следовательно, максимальная работа мышцей производится при средних величинах нагрузок (закон средних нагрузок ).

Режимы мышечных сокращений

Различают изотонический, изометрический и смешанный режимы сокращения мышц.

При изотоническом сокращении мышцы происходит изменение ее длины, а напряжение остается постоянным. Такое сокращение происходит в том случае, когда мышца не перемещает груз. В естественных условиях близкими к изотоническому типу сокращений являются сокращения мышц языка.

При изометрическом сокращении длина мышечных волокон остается постоянной, меняется напряжение мышцы. Такое сокращение мышцы можно получить при попытке поднять непосильный груз.

В целом организме сокращения мышц никогда не бывают чисто изотоническим или изометрическим, они всегда имеют смешанный характер, т. е. происходит изменение и длины, и напряжения мышцы. Такой режим сокращения называется ауксотоническим если преобладает напряжение мышцы, или ауксометрическим если преобладает укорочение.

Выше была рассмотрена лишь общая схема явлений, лежащих в основе тетанического сокращения. Для того чтобы более подробно познакомится с тем, как этот процесс совершается в условиях естественной деятельности организма, необходимо остановиться на некоторых особенностях иннервации скелетной мышцы двигательным нервом.

Каждое моторное волокно, являющееся отростком двигательной клетки передних рогов спинного мозга, иннервирует не одно, а целую группу мышечных волокон. Такая группа получила название моторной единицы . Количество мышечных волокон, входящих в состав моторной единицы в разных мышцах человека, варьирует от 10 до 3000.

Наименьшее число волокон содержится в моторных единицах быстрых мышц,обеспечивающих наиболее точные движения. Так, в глазных мышцах и мышцах пальцев руки моторные единицы имеют в своём составе 10-25 мышечных волокон, причем каждое из них получает иннервацию со стороны нескольких нервных волокон. В отличие от этого относительно медленные мышцы, участвующие в регуляции позы тела и ненуждающиеся в точном контроле, состоят из моторных единиц, включающих в свой состав от 2000 до 3000 волокон. Моторные единицы икроножной мышцы содержат около 1500 волокон.

Вследствие того что скорость распространения возбуждения в нервных волокнах, иннервирующих скелетные мышцы, очень велика, мышечные волокна, составляющие моторную единицу, приходят в состояние возбуждения практически одновременно. Электрическая активность моторной единицы имеет вид частокола (рис. 146, А ), в котором каждому пику соответствует суммарный потенциал действия многих одновременно возбужденных волокон.

Суммация сокращений моторных единиц в целой мышце . В отличие от мышечных волокон каждой моторной единицы, синхронно, т. е. одновременно, возбуждающихся в ответ на приходящий импульс, мышечные волокна различных моторных единиц мышцы, как правило, работают асинхронно. Объясняется это тем, что моторные единицы иннервируются различными двигательными нейронами, которые посылают импульсы с разной частотой и разновременно. Несмотря на неодновременность начала и конца сокращения различных моторных единиц, суммарное сокращение мышцы в целом имеет в условиях нормальной деятельности слитный характер, по форме своей напоминающий гладкий тетанус, даже в том случае, когда каждая из моторных единиц работает в редком ритме (например, 5 сокращений в секунду).

Таким образом, при асинхронной деятельности моторных единиц, обусловленной асинхронной работой соответствующих нейронов спинного мозга, все движения нашего тела имеют плавный характер уже при малой частоте двигательной импульсации. Асинхронная деятельность моторных единиц не позволяет различать электрическую активность каждой из них при отведении потенциалов от целой мышцы: неодновременно возникающие пики потенциалов действия алгебраически суммируются (интерферируют) на электродах, вследствие чего возникает сложная картина, по которой можно лишь косвенно судить о степени возбуждения дельных мышечных волокон (см. рис. 146, Б ).

В покос моторные единицы мышц конечностей человека обнаруживают лишь очень редкие разряды потенциалов действия. Это обусловливает тонус мышц. При небольшом напряжении появляются разряды с частотой 5-10 в секунду. Повышение напряжения увеличивает частоту следования потенциалов действия до 20-50 в секунду.

Сила мышечного сокращения зависит от числа моторных единиц, вовлекаемых одновременно в реакцию, и от частоты возбуждения каждой из них.

Основным морфо-функциональным элементом нервно-мышечного аппарата скелетных мышц является двигательная единица (ДЕ). Она включает мотонейрон спинного мозга с иннервируемыми его аксоном мышечными волокнами. Внутри мышцы этот аксон образует несколько концевых веточек. Каждая такая веточка образует контакт - нервно-мышечный синапс на отдельном мышечном волокне. Нервные импульсы, идущие от мотонейрона, вызывают сокращения определенной группы мышечных волокон. Двигательные единицы мелких мышц, осуществляющих тонкие движения (мышцы глаза, кисти), содержат небольшое количество мышечных волокон. В крупных их в сотни раз больше. Все ДЕ в зависимости от функциональных особенностей делятся на 3 группы:

I. Медленные неутомляемые. Они образованы "красными" мышечными волокнами, в которых меньше миофибрилл. Скорость сокращения и сила этих волокон относительно небольшие, но они мало утомляемы. Поэтому их относят к тоническим. Регуляция сокращений таких волокон осуществляется небольшим количеством мотонейронов, аксоны которых имеют мало концевых веточек. Пример - камбаловидная мышца.

IIВ. Быстрые, легко утомляемые. Мышечные волокна содержат много миофибрилл и называются "белыми". Быстро сокращаются и развивают большую силу, но быстро утомляются. Поэтому их называют фазными. Мотонейроны этих ДЕ самые крупные, имеют толстый аксон с многочисленными концевыми веточками. Они генерируют нервные импульсы большой частоты. Мышцы глаза.

IIA. Быстрые, устойчивые к утомлению. Занимают промежуточное положение.

Физиология гладких мышц

Гладкие мышцы имеются в стенках большинства органов пищеварения, сосудов, выводных протоков различных желез, мочевыводящей системы. Они являются непроизвольными и обеспечивают перистальтику органов пищеварения и мочевыводящей системы, поддержание тонуса сосудов. В отличие от скелетных, гладкие мышцы образованы клетками чаще веретенообразной формы и небольших размеров, не имеющими поперечной исчерченности. Последнее связано с тем, что сократительный аппарат не обладает упорядоченным строением. Миофибриллы состоят из тонких нитей актина, которые идут в различных направлениях и прикрепляющихся к разным участкам сарколеммы. Миозиновые протофибриллы расположен рядом с актиновыми. Элементы саркоплазматического ретикулума не образуют систему трубочек. Отдельные мышечные клетки соединяются между собой контактами с низким электрическим сопротивлением - нексусами, что обеспечивает распространение возбуждения по всей гладкомышечной структуре. Возбудимость и проводимость гладких мышц ниже, чем скелетных.

Мембранный потенциал составляет 40-60 мВ, так как мембрана ГМК имеет относительно высокую проницаемость для ионов натрия. Причем у многих гладких мышц МП не постоянен. Он периодически уменьшается и вновь возвращается к исходному уровню. Такие колебания называют медленными волнами (МВ). Когда вершина медленные волны достигает критического уровня деполяризации, на ней начинают генерироваться потенциалы действия, сопровождающиеся сокращениями (рис). МВ и ПД проводятся по гладким мышцам со скоростью всего от 5 до 50 см/сек. Такие гладкие мышцы называют спонтанно активными, т.е. они обладают автоматией. Например за счет такой активности происходит перистальтика кишечника. Водители ритма кишечной перистальтики расположены в начальных отделах соответствующих кишок.

Генерация ПД в ГМК обусловлена входом в них ионов кальция. Механизмы электромеханического сопряжения также отличаются. Сокращение развивается за счет кальция, входящего в клетку во время ПД, Опосредует связь кальция с укорочением миофибрилл важнейший клеточный белок - кальмодулин.

Кривая сокращения также отличается. Латентный период, период укорочения, а особенно расслабления значительно продолжительнее, чем у скелетных мышц. Сокращение длится несколько секунд. Гладким мышцам, в отличие от скелетных свойственно явление пластического тонуса. Это способность длительное время находится в состоянии сокращения без значительных энергозатрат и утомления. Благодаря этому свойству поддерживается форма внутренних органов и тонус сосудов. Кроме того гладкомышечные клетки сами являются рецепторами растяжения. При их натяжении начинают генерироваться ПД, что приводит к сокращению ГМК. Это явление называется миогенным механизмом регуляции сократительной активности.